• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Álgebra Linear] Provar que é um espaço vetorial

[Álgebra Linear] Provar que é um espaço vetorial

Mensagempor Nicolas1Lane » Sáb Set 06, 2014 19:40

Seja o R² definido por:
i) (x,y)+(s,t)=(x+s,y+t) tal que u=(x,y) e v=(s,t) pertencem ao R²
ii) *c(x,y)= (*cx, *cy) tal que *c pertence a R. E u e v pertencem ao R²
Prove que o R² é um espaço vetorial.

Solução:
As condições básicas para que se tenha um espaço vetorial é a soma entre 2 vetores pertencentes ao espaço deve pertencer ao espaço vetorial, assim como o produto de 2 vetores pertencentes também deve pertencer ao espaço vetorial. Então também deve-se ter satisfeitas as 4 condições da soma e as 4 condições da multiplicação de vetores.

A1, A2, A3, A4 e M1, M2, M3, M4 são satisfeitos.

---
Eu sei que o R² quando definido por i e ii é um espaço vetorial, mas como posso fazer uma prova matematicamente disto, teriam uma sugestão? Obrigado.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}