por Nicolas1Lane » Sáb Set 06, 2014 19:40
Seja o R² definido por:
i) (x,y)+(s,t)=(x+s,y+t) tal que u=(x,y) e v=(s,t) pertencem ao R²
ii) *c(x,y)= (*cx, *cy) tal que *c pertence a R. E u e v pertencem ao R²
Prove que o R² é um espaço vetorial.
Solução:
As condições básicas para que se tenha um espaço vetorial é a soma entre 2 vetores pertencentes ao espaço deve pertencer ao espaço vetorial, assim como o produto de 2 vetores pertencentes também deve pertencer ao espaço vetorial. Então também deve-se ter satisfeitas as 4 condições da soma e as 4 condições da multiplicação de vetores.
A1, A2, A3, A4 e M1, M2, M3, M4 são satisfeitos.
---
Eu sei que o R² quando definido por i e ii é um espaço vetorial, mas como posso fazer uma prova matematicamente disto, teriam uma sugestão? Obrigado.
-
Nicolas1Lane
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Set 11, 2013 23:25
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Exatas/Ciência da Computação
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Algebra Linear: Espaço Vetorial
por Caeros » Dom Nov 14, 2010 17:39
- 4 Respostas
- 5463 Exibições
- Última mensagem por andrefahl

Sáb Nov 27, 2010 18:16
Álgebra
-
- Algebra Linear - Espaço Vetorial
por Nillcolas » Qua Mar 16, 2011 17:05
- 1 Respostas
- 3834 Exibições
- Última mensagem por LuizAquino

Qua Mar 16, 2011 17:31
Álgebra
-
- Álgebra Linear Espaço Vetorial("base")
por Garota nerd » Seg Set 19, 2011 00:39
- 3 Respostas
- 2680 Exibições
- Última mensagem por LuizAquino

Seg Set 19, 2011 16:22
Álgebra Linear
-
- [Espaço vetorial]-Combinação Linear
por Ana_Rodrigues » Sáb Abr 28, 2012 16:21
- 2 Respostas
- 1547 Exibições
- Última mensagem por Ana_Rodrigues

Dom Abr 29, 2012 16:48
Álgebra Elementar
-
- [Ágebra Linear] Espaço Vetorial
por luisfelipefn » Seg Dez 08, 2014 22:54
- 1 Respostas
- 1728 Exibições
- Última mensagem por adauto martins

Qua Dez 10, 2014 11:49
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.