por Tathiclau » Sáb Dez 14, 2013 14:32
Determine a matriz do operador T : R² -> R² relativamente a base a = (1, 1), (-1, 1),
sabendo que T(-7, 4) = (2, 3) e T(6, 1) = (4, 5).
-
Tathiclau
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qua Dez 11, 2013 23:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
por e8group » Dom Dez 15, 2013 11:25
Acho que queria dizer

. A primeira coisa que deve se perguntar o conjunto

é L.I. ? R. sim é L.I. e não é necessário tomar combinação linear nula, basta notar que eles não são múltiplos escalares . Segundo , através de um resultado da A.L. vide
viewtopic.php?f=117&t=13470 , podemos afirmar que

constitui uma base ordenada para o

.Como sabemos o que o operador

faz com os vetores de B ,é possível determina-lo (basta reescrever (x,y) como combinação linear dos vetores de B e em seguida aplicar o operador T e usar a linearidade dele ) .
Em resumo , para este exercício apenas precisávamos verificar se B é uma base p/

,como ele é , então deverás escrever

e

como combinação linear dos vetores de

.
Espero que ajude .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Ortogonalidade/Operador Linear] Determinar W? e operador...
por Everson Levi » Dom Mai 12, 2013 17:15
- 1 Respostas
- 2160 Exibições
- Última mensagem por Everson Levi

Sáb Mai 18, 2013 11:55
Álgebra Linear
-
- (AFA)-SISTEMAS LINEARES(MATRIZ)
por natanskt » Qui Nov 25, 2010 15:01
- 1 Respostas
- 3575 Exibições
- Última mensagem por Elcioschin

Qui Nov 25, 2010 15:47
Matrizes e Determinantes
-
- (ESPCEX)-SISTEMAS LINEARES(MATRIZ)
por natanskt » Qui Nov 25, 2010 11:43
- 1 Respostas
- 3493 Exibições
- Última mensagem por Elcioschin

Qui Nov 25, 2010 16:26
Matrizes e Determinantes
-
- (ESPCEX)-SISTEMAS LINEARES(MATRIZ)
por natanskt » Qui Nov 25, 2010 11:49
- 0 Respostas
- 1438 Exibições
- Última mensagem por natanskt

Qui Nov 25, 2010 11:49
Matrizes e Determinantes
-
- (ESPCEX)-SISTEMAS LINEARES(MATRIZ)
por natanskt » Qui Nov 25, 2010 11:50
- 1 Respostas
- 1348 Exibições
- Última mensagem por Elcioschin

Qui Nov 25, 2010 16:24
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.