por Ge_dutra » Qua Jan 30, 2013 11:25
Bom dia,
Estou tentando resolver um exercicio e a resposta não bate com o gabarito do livro.
O exercício é:
Ortonormalizar a base B = {(1,0,0),(0,1,1),(0,1,2)} pelo processo de Gram-Schimdt
Os dois primeiros vetores bateram com o livro, mas o terceiro não. O gabarito é {(1,0,0),(0,
![\frac{1}{\sqrt[]{2}},\frac{1}{\sqrt[]{2}} \frac{1}{\sqrt[]{2}},\frac{1}{\sqrt[]{2}}](/latexrender/pictures/97b94cbebea8907419bcda236f7de24c.png)
),(0,-
![\frac{1}{\sqrt[]{2}} \frac{1}{\sqrt[]{2}}](/latexrender/pictures/a708a9a9173a86197e94e74a716f2bea.png)
,
![\frac{1}{\sqrt[]{2}} \frac{1}{\sqrt[]{2}}](/latexrender/pictures/a708a9a9173a86197e94e74a716f2bea.png)
)}
O meu terceiro vetor deu (0,

,1) que normalizado não deu (0,-
![\frac{1}{\sqrt[]{2}} \frac{1}{\sqrt[]{2}}](/latexrender/pictures/a708a9a9173a86197e94e74a716f2bea.png)
,
![\frac{1}{\sqrt[]{2}} \frac{1}{\sqrt[]{2}}](/latexrender/pictures/a708a9a9173a86197e94e74a716f2bea.png)
)
Poderiam me ajudar?
Desde já, agradeço.
-
Ge_dutra
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Jan 28, 2013 09:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por young_jedi » Qui Jan 31, 2013 15:18
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Base Ortonormal
por Pessoa Estranha » Seg Nov 04, 2013 22:18
- 0 Respostas
- 2104 Exibições
- Última mensagem por Pessoa Estranha

Seg Nov 04, 2013 22:18
Geometria Analítica
-
- [Subconjunto de R^3]Equação Geral e Base Ortonormal de W.
por guisaulo » Ter Nov 27, 2012 21:42
- 2 Respostas
- 2304 Exibições
- Última mensagem por guisaulo

Qua Nov 28, 2012 12:03
Álgebra Linear
-
- [Produto Escalar] Coordenadas em base ortonormal
por LucasSG » Qua Mai 29, 2013 17:47
- 3 Respostas
- 2064 Exibições
- Última mensagem por temujin

Qui Mai 30, 2013 23:12
Geometria Analítica
-
- [Bases/Dimensao] Achar o vetor que falta da Base
por ewald » Ter Abr 03, 2012 23:31
- 3 Respostas
- 3086 Exibições
- Última mensagem por LuizAquino

Qua Abr 04, 2012 17:50
Introdução à Álgebra Linear
-
- Gram-Schmidt
por ewald » Sex Mai 11, 2012 15:58
- 1 Respostas
- 1942 Exibições
- Última mensagem por ewald

Sex Mai 11, 2012 22:21
Introdução à Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.