• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matemática Financeira 8] Juros compostos

[Matemática Financeira 8] Juros compostos

Mensagempor acorreia » Sex Mar 01, 2013 15:24

Para um capital de 14.800,00, prazo de dez semestres, o montante foi $ 36.000,00. Calcular a taxa de juros compostos ao semestre.
acorreia
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Abr 18, 2012 18:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Matemática Financeira 8] Juros compostos

Mensagempor DanielFerreira » Sáb Mar 02, 2013 16:30

\\ S = P(1 + i)^t \\\\ 36000 = 14800(1 + i)^{10} \\\\ (1 + i)^{10} = 2,432 \\\\ (1 + i) = \sqrt[10]{2,432} \\\\ i = 1,093 - 1 \\\\ \boxed{i = 0,093}

Ou,

9,3% a.s
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}