• Anúncio Global
    Respostas
    Exibições
    Última mensagem

me ajude

me ajude

Mensagempor celso alexandre » Seg Out 03, 2011 16:41

Matematica financeira - a questao e essa? um titulo vencivel em 4 meses apresenta um valor de resgate de R$407.164,90 é prposta a troca deste titulo por outro de R$480.000,00 vencivel daqui a 8 meses. sendo de 5% am a rentabilidade exigida pelo aplicador, avalie se a troca e vantajosa?
as formulas aprendidas e aplicadas e juros simples, juros composto, montante, taxas aparente real e inflacionaria, formula do antecipado,, ai vem minha pergunta qual dessas formulas se aplicam.. ou qual formula aplicar?
celso alexandre
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 27, 2011 16:32
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: me ajude

Mensagempor mausim » Qua Out 26, 2011 14:55

celso alexandre escreveu:Matematica financeira - a questao e essa? um titulo vencivel em 4 meses apresenta um valor de resgate de R$407.164,90 é prposta a troca deste titulo por outro de R$480.000,00 vencivel daqui a 8 meses. sendo de 5% am a rentabilidade exigida pelo aplicador, avalie se a troca e vantajosa?
as formulas aprendidas e aplicadas e juros simples, juros composto, montante, taxas aparente real e inflacionaria, formula do antecipado,, ai vem minha pergunta qual dessas formulas se aplicam.. ou qual formula aplicar?


Bem, eu faria assim:

Quanto vale o título hoje, esse que vai vencer daqui a 4 meses?
Se a taxa que o emprestador acha exige é de 5%am, então a fórmula a ser usada para isto é a do Montante, invertendo sua utilização para cálculo do valor presente:

M = {C (1+i)^n}

Como desejamos o valor da aplicação, no caso o "C", temos

C = {M \over {(1+i)^n}

isto é

C = {407164,90 \over {(1+0,05)^4}

C = 334.975,60

que é o valor presente.

Este valor presente seria fruto de uma nova aplicação, para daqui a 8 meses.

Se o aplicador exige os mesmos 5%am, teríamos de novo a fórmula do montante com esta aplicação

M = {334.975,60 (1,05)^8} = 494.911,50

Como este valor é superior ao oferecido no novo contrato (480.000,00), não será um bom negócio trocar.
mausim
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Ter Out 25, 2011 10:27
Formação Escolar: SUPLETIVO
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D