• Anúncio Global
    Respostas
    Exibições
    Última mensagem

area

area

Mensagempor Joana Gabriela » Seg Ago 09, 2010 11:01

O Sr. José dispõe de 180 metros de tela, para fazer um cercado retangular, aproveitando, como um dos
lados, parte de um extenso muro reto.
O cercado compõe-se de uma parte paralela ao muro e três outras perpendiculares a ele (ver figura).
Para cercar a maior área possível, com a tela disponível, os valores de x e y são,
respectivamente:
A) 45m e 45m
B) 30m e 90m
C) 36m e 72m
D) 40m e 60m
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando

Re: area

Mensagempor MarceloFantini » Seg Ago 09, 2010 12:48

2x+y=180 \Rightarrow y = 180-2x

\mbox{Area} = xy = x(180-2x) = -2x^2 +180x

X_v = -\frac{b}{2a} = -\frac{180}{-4} = 45 \Rightarrow y = 90
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: area

Mensagempor Joana Gabriela » Ter Ago 10, 2010 17:02

Muito Obrigado :-D
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando

Re: area

Mensagempor Joana Gabriela » Qua Ago 11, 2010 11:24

A resposta da questão é 30 m e 90 m
E não 45 e 90
Essa questao se resolve utilizando o Xv?
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando

Re: area

Mensagempor MarceloFantini » Qua Ago 11, 2010 13:11

Eu assumi que era um retângulo, mas assumi errado. Pode postar a figura?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Conversão de Unidades

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}