• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Somatório] Provar pelo Método de Indução Matemática

[Somatório] Provar pelo Método de Indução Matemática

Mensagempor Prof Prevaricador » Dom Abr 14, 2013 16:25

Olá, venho mais uma vez colocar uma questão que não consegui resolver...


Por recurso ao metodo de inducao matematica prove que:

\sum_{{k}={1}}^{n} \frac{1}{\left(2 \cdot k+3\right) \cdot \left(5+2 \cdot k\right)} = \frac{n}{5 \cdot \left(5+2 \cdot n\right)}


Já consegui provar o caso base n=1 que deu 1/35

Não consegui foi acabar de provar a Tese de Indução

\sum_{{k}={1}}^{n+1} \frac{1}{\left(2 \cdot k+3\right) \cdot \left(5+2 \cdot k\right)} = \frac{n+1}{5 \cdot \left(5+2 \cdot n+1\right)}

Pelos meus cálculos ficaria:

\sum_{{k}={1}}^{n+1} \frac{1}{\left(2 \cdot k+3\right) \cdot \left(5+2 \cdot k\right)} = \sum_{{k}={1}}^{n} \frac{1}{\left(2 \cdot k+3\right) \cdot \left(5+2 \cdot k\right)} + \frac{1}{\left(2 \cdot (n+1)+3\right) \left(5+2 \cdot (n+1)\right)}

substituindo pela hipótese de indução

= \frac{n}{5\cdot\left(5+2 \cdot n\right) } + \frac{1}{\left(2 \cdot (n+1)+3\right) \left(5+2 \cdot (n+1)\right)}

e empanquei aqui...

Podem ajudar-me a concluir este exercício?

Cumprimentos
Prof Prevaricador
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 29, 2012 12:44
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Somatório] Provar pelo Método de Indução Matemática

Mensagempor e8group » Dom Abr 14, 2013 17:02

Dica : Fazendo p = n+1 ,podemos reescrever \sum_{k=1}^{n+1} \frac{1}{(2k+3)(5+2k)} = \frac{n}{5(5+2n)} + \frac{1}{(2(n+1)+3)(5+2(n+1))} como


\frac{p-1}{5(3+2p)} + \frac{1}{(2p +3)(5+2p)} = \frac{1}{2p+3}\left(\frac{p-1}{5}  + \frac{1}{5+2p}\right ) = \frac{1}{2p+3}\left(\frac{(p-1)(5+2p) +5}{5(5+2p)} \right ) = \frac{1}{2p+3}\left(\frac{(p-1)(5+2p) +5}{5(5+2p)} \right ) .

Mas , (p-1)(5+2p) +5  =  p(5+2p) - (5+2p) + 5 = p(5+2p) - 2p = p(2p+3) . Então ...

Consegue concluir ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Somatório] Provar pelo Método de Indução Matemática

Mensagempor Prof Prevaricador » Dom Abr 14, 2013 18:35

Já consegui concluir o exercício depois de ler as tuas indicações.

Mas consegui resolver pela expressaõ:

=\frac{n}{5\cdot\left(5+2 \cdot n\right) } + \frac{1}{\left(2 \cdot (n+1)+3\right) \left(5+2 \cdot (n+1)\right)}

estava a reduzir mal ao mmc...

Obrigado pela ajuda Santhiago!!
Prof Prevaricador
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 29, 2012 12:44
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59