• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite trigonometricos] Fundamental II

[limite trigonometricos] Fundamental II

Mensagempor TheKyabu » Sáb Out 20, 2012 18:27

Esses 2 exercicios n to conseguindo enxergar o artificio matematico q devo usar,ja tentei força aparecer produtos notaveis mas n sai do lugar
1º Exercicio \lim_{x->0}\frac{sen({x}^{2}+\frac{1}{x}) - sen\frac{1}{x}}{x}

\lim_{x->0}\frac{x - senx}{{x}^{2}- senx}

Vlw ai
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [limite trigonometricos] Fundamental II

Mensagempor e8group » Sáb Out 20, 2012 20:55

Note que ,


cos(x^2) sin(1/x)+cos(1/x) sin(x^2) = sin(x^2 +1/x)


\implies




\lim_{x\to 0} \frac{ sin(x^2 +1/x)-sin(1/x)}{x}=\lim_{x\to 0} \frac{cos(x^2) sin(1/x)+cos(1/x) sin(x^2)-sin(1/x)}{x}  =

\lim_{x\to 0} \frac{sin(x^{-1})[cos(x^2)-1] +sin(x^2)cos(1/x)}{x} .


Lembrando que ,


cos(x^2)-1   = cos (2 \frac{x^2}{2} )  - 1  =  (cos^2( \frac{x^2}{2} ) - sin^2( \frac{x^2}{2} )) -1 =  (cos^2( \frac{x^2}{2} )  - 1) - sin^2( \frac{x^2}{2} )  =   sin^2( \frac{x^2}{2} ) -  sin^2( \frac{x^2}{2} ) = 0 .


Daí ,


\lim_{x\to 0} \frac{sin(x^{-1})[cos(x^2)-1] +sin(x^2)cos(1/x)}{x} =


\lim_{x\to 0} \frac{sin(x^2)cos(1/x)}{x}  =


\lim_{x\to 0} \frac{(sin(x^2)cos(1/x) )x}{x^2}


\left(\lim_{x\to 0} \frac{(sin(x^2)cos(1/x) )}{x^2} \right) \cdot \lim_{x\to 0} x  =


\left(\lim_{x\to 0} \frac{(sin(x^2)cos(1/x) )}{x^2} \right) \cdot  0  =   0 . .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [limite trigonometricos] Fundamental II

Mensagempor TheKyabu » Dom Out 21, 2012 00:17

Fala Santhiago,baum?
Mas na etapa que vc desenvolve cos{x}^{2} - 1 = cos(\frac{2{x}^{2}}{2})- 1
{cos}^{2}({x}^{2}/2)- 1 = - {sen}^{2}({x}^{2}/2)
Ai o resultado seria -2 {sen}^{2}({x}^{2}/2)

Obrigado ai por me ajudar
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [limite trigonometricos] Fundamental II

Mensagempor e8group » Dom Out 21, 2012 00:47

TheKyabu ,você estar certo .Me desculpa .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.