• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Demonstração

[Integrais] Demonstração

Mensagempor Henrique Bueno » Qua Jun 20, 2012 16:37

O exercício é o seguinte:

Prove que
\int\limits_{0}^{\pi}~cos^{2p+1}(x)dx=0 com p pertencente a Z.
(sugestão: faça x=\pi-u)

eu tentei usar a sugestão e cai na mesma coisa de antes porém na variável u. Tentei dizer que u=senx e encontrei a seguinte integral:

\int\limits_{0}^{\pi}~(1-u^2)^pdu

porém dai eu não consigo sair. Por favor, me ajudem!
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Integrais] Demonstração

Mensagempor Russman » Qua Jun 20, 2012 21:29

A demonstração é relativamente simples. Veja que efetuando a mudança de variável temos

\int_{0}^{\pi }(cos(x))^{2p+1}dx = \int_{u(0)}^{u(\pi )}(cos(\pi -u))^{2p+1}(-du)=-\int_{\pi }^{0}(cos(\pi-u ))^{2p+1}du.

Agora utilizando a propriedade de inversão de limites de integração e o fato que

cos(\pi -u) =cos(u-\pi )=-cos(u), temos , portanto

-\int_{\pi }^{0}(cos(\pi-u ))^{2p+1}du = \int_{0 }^{\pi}(cos(u-\pi ))^{2p+1}du = -\int_{0 }^{\pi}(cos(u))^{2p+1}du,

uma vez que o sinal de menos sobrevive as potências ímpares.

Agora veja que, do início,

\int_{0}^{\pi }(cos(x))^{2p+1}dx = -\int_{0 }^{\pi}(cos(u))^{2p+1}du.

Note que x e u são, nos processos de integração, variáveis "mudas", isto é, como efetua-se uma integração definida as variáveis, no resultado final, não aparecem explicitamente. Logo, podemos tomar x=u=t. Assim,

\int_{0}^{\pi }(cos(t))^{2p+1}dt = -\int_{0 }^{\pi}(cos(t))^{2p+1}dt\Rightarrow 2\int_{0 }^{\pi}(cos(t))^{2p+1}dt=0.

e, portanto,

\int_{0 }^{\pi}(cos(t))^{2p+1}dt=0

c.q.d
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: