• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] AJUDA Calculo de Limite

[Limite] AJUDA Calculo de Limite

Mensagempor will94 » Ter Mai 22, 2012 20:32

Preciso resolver esse limite, mas não sei como proceder com uma função com duas raízes diferentes:

\lim_{x\rightarrow 64} \left(\sqrt[2]{x}-8 \right)/\left(\sqrt[3]{x}-4 \right)

O resultado eu sei que dá 3.
Muito obrigado àquele(a) que me ajudar.
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Limite] AJUDA Calculo de Limite

Mensagempor LuizAquino » Qua Mai 23, 2012 11:46

will94 escreveu:Preciso resolver esse limite, mas não sei como proceder com uma função com duas raízes diferentes:

\lim_{x\rightarrow 64} \left(\sqrt[2]{x}-8 \right)/\left(\sqrt[3]{x}-4 \right)

O resultado eu sei que dá 3.
Muito obrigado àquele(a) que me ajudar.


Note que:

\lim_{x\to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x}-4} = \lim_{x\to 64} \frac{\sqrt{x} - \sqrt{64}}{\sqrt[3]{x}-\sqrt[3]{64}}

Agora multiplique o numerador e o denominador pela expressão:

\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)

Temos então que:

\lim_{x\to 64} \frac{\sqrt{x} - \sqrt{64}}{\sqrt[3]{x}-\sqrt[3]{64}} = \lim_{x\to 64} \frac{\left(\sqrt{x} - \sqrt{64}\right)\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)}{\left(\sqrt[3]{x}-\sqrt[3]{64}\right)\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)}

Agora use os seguintes produtos notáveis:

a^2 - b^2 = (a - b)(a + b)

a^3 - b^3 = (a - b)\left(a^2 + ab + b^2\right)

Tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}