• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Intergral da Sec(x) dx usando tg(x/2)=Z

Intergral da Sec(x) dx usando tg(x/2)=Z

Mensagempor rycherr » Ter Mai 08, 2012 01:32

quero saber como se faz a integral de sec(x)dx utilizando o metodo de funções racionais de seno e cosseno.
aquele método no qual se substitui Z=tg(x/2) cos(x)=(1-z²)/(1+z²) e sen(x)=2Z/1+Z²

Obrigado.
rycherr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 08, 2012 01:25
Formação Escolar: GRADUAÇÃO
Área/Curso: ggbb
Andamento: cursando

Re: Intergral da Sec(x) dx usando tg(x/2)=Z

Mensagempor LuizAquino » Ter Mai 08, 2012 12:04

rycherr escreveu:quero saber como se faz a integral de sec(x) dx utilizando o metodo de funções racionais de seno e cosseno.
aquele método no qual se substitui Z=tg(x/2) cos(x)=(1-z²)/(1+z²) e sen(x)=2Z/1+Z²


Note que:

\int \sec x \, dx = \int \frac{1}{\cos x} \, dx = \int \frac{1 + \,\textrm{tg}^2\,\frac{x}{2}}{1 - \,\textrm{tg}^2\,\frac{x}{2}} \, dx

Agora faça a substituição:

z = \textrm{tg} \,\frac{x}{2}

dz = \frac{1}{2}\sec^2 \,\frac{x}{2}\,dx

Lembrando da identidade trigonométrica 1 + \textrm{tg}^2\,\alpha= \sec^2 \alpha , podemos reescrever dz como sendo:

dz = \frac{1}{2}\left(1 + \,\textrm{tg}^2\,\frac{x}{2}\right)\,dx

Agora tente continuar a partir daí.
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Intergral da Sec(x) dx usando tg(x/2)=Z

Mensagempor rycherr » Ter Mai 08, 2012 16:28

sim, até ai eu fiz, parei em ln l 1+cosx+senx/1+cosx-senx l

se igualar isso á ln l secx+tgx l prova-se que é verdadeiro, mas como chegar em ln l secx+tgx l sómente desdobrando a formula?
rycherr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 08, 2012 01:25
Formação Escolar: GRADUAÇÃO
Área/Curso: ggbb
Andamento: cursando

Re: Intergral da Sec(x) dx usando tg(x/2)=Z

Mensagempor LuizAquino » Ter Mai 08, 2012 17:01

rycherr escreveu:sim, até ai eu fiz, parei em ln l 1+cosx+senx/1+cosx-senx l

se igualar isso á ln l secx+tgx l prova-se que é verdadeiro, mas como chegar em ln l secx+tgx l sómente desdobrando a formula?


Se você já tinha desenvolvido até certa parte, então por que não enviou o seu desenvolvimento?

Note que isso economizaria o tempo da pessoa que está lhe ajudando, pois ela poderia apenas corrigir as partes que estavam erradas. Ou ainda, apenas informar como prosseguir.

Além disso, informar sobre suas tentativas faz parte das Regras deste Fórum. Vide a Regra 1.

De qualquer modo, refaça as suas contas, pois você deveria chegar em:

\int \sec x \, dx = \ln\left|\frac{1 + \,\textrm{tg}\,\frac{x}{2}}{1 - \,\textrm{tg}\,\frac{x}{2}}\right| + c

A partir daí, temos que:

\ln\left|\frac{1 + \,\textrm{tg}\,\frac{x}{2}}{1 - \,\textrm{tg}\,\frac{x}{2}}\right| = \ln\left|\frac{1 + \,\frac{\textrm{sen}\,\frac{x}{2}}{\cos \frac{x}{2}}}{1 - \,\frac{\textrm{sen}\,\frac{x}{2}}{\cos \frac{x}{2}}}\right|

= \ln\left|\frac{\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}}{\cos \frac{x}{2} - \,\textrm{sen}\,\frac{x}{2}}\right|

= \ln\left|\frac{\left(\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}\right)\left(\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}\right)}{\left(\cos \frac{x}{2} - \,\textrm{sen}\,\frac{x}{2}}\right)\left(\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}\right)\right|

= \ln\left|\frac{\left(\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}\right)^2}{\cos^2 \frac{x}{2} - \,\textrm{sen}^2\,\frac{x}{2}}\right|

Agora tente continuar.
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59