• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais de linha]

[Integrais de linha]

Mensagempor AlexandreTS » Sáb Mai 05, 2012 22:52

Calcular \int_{c}^{}x{y}^{4} , sendo C a metade direita do círculo {x}^{2} + {y}^{2} = 16.

O que eu fiz:
1) Achar uma parametrização x(t) e y(t):
Utilizei x(t) = cos(t) e y(t) = sen(t). Elevando as derivadas das funções componentes ao quadrado, somando elas e colocando na raiz, temos 1, então a integral de linha fica igual a:

\int_{c}^{}cos(t){sen(t)}^{4}

2) Coloquei como limites de integração \frac{-\pi}{2} e \frac{\pi}{2}.

3) Fiz então a substituição u = {sen(t)}^{2}, de modo que dt = \frac{du}{2cos(t)} e a integral fica assim:
\frac{1}{2}\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}{u}^{2}du
A partir disso ficou fácil calcular o valor da integral, mas o resultado, segundo o livro, é de 1638,4. Não sei em que parte errei, se os limites escolhidos estão certos... tem um momento em que eu elimino o cosseno da integral por uma divisão; acho que isso está errado, mas não sei se foi exatamente nessa parte que eu errei.

Ajudem por favor!
AlexandreTS
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mar 30, 2012 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integrais de linha]

Mensagempor AlexandreTS » Sáb Mai 05, 2012 22:55

Aaaah o que eu errei foi na parametrização, certo? Eu preciso colocar rcos(t) e rsen(t), então teria x(t) = 4cos(t) e y(t) = 4sen(t)... certo?
AlexandreTS
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mar 30, 2012 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?