por samra » Dom Abr 01, 2012 12:14
Encontrar um intervalo aberto em torno de
a no ql a desigualdade |f(x)-L|<

valha.
Dê então um valor pra

>0 tal que para todo x satisfazendo 0<|x-a|<

a desigualdade |f(x)-L|<seja verdadeira.
f(x)=

, L=3, a=10,

=1
o intervalo eu conseguir achar, da seguinte maneira:
0<|x-10|<

|

-3|<1
3-1<|

<4
2<|

<4
4<|19-x|<16
-15<|-x|<-3
15>|x|>3
logo (3,15) confere com a resposta do livro, acredito que a resolução esteja correta.
Mas ai, o valor de

não consigo achar, sempre acho -7, mas no livro a resposta é 5.
Alguem poderia ajudar-me por favor?
Obg
Ps: Livro Calculo 1, Thomas, pag 92, nro 19
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
-
samra
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sex Jan 27, 2012 11:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Informatica
- Andamento: formado
por fraol » Dom Abr 01, 2012 15:46
Seu delta deveria ser maior do que 0.
Para

dado, você encontrou

.
Usando esses extremos em

, encontramos

e

.
Então fixando x em 10, devemos encontrar um

tal que

.
Ou seja:

e

Portanto se você tomar

a implicação do limite será satisfeita.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda para encontrar o "u" na integral
por vmouc » Sex Jun 10, 2011 15:25
- 3 Respostas
- 2423 Exibições
- Última mensagem por vmouc

Sáb Jun 11, 2011 21:05
Cálculo: Limites, Derivadas e Integrais
-
- LEC - encontrar valores
por Washington Murakami » Dom Out 09, 2011 21:55
- 1 Respostas
- 1210 Exibições
- Última mensagem por Washington Murakami

Dom Out 09, 2011 21:59
Matemática Financeira
-
- P.G. (Encontrar os termos)
por Rafael16 » Qua Jul 18, 2012 23:15
- 1 Respostas
- 2506 Exibições
- Última mensagem por Russman

Qui Jul 19, 2012 00:02
Progressões
-
- [ PA ] Encontrar termos
por GrazielaSilva » Qui Out 04, 2012 12:42
- 2 Respostas
- 3117 Exibições
- Última mensagem por GrazielaSilva

Sex Out 05, 2012 01:22
Progressões
-
- [ PA ] Encontrar termos
por GrazielaSilva » Qui Out 11, 2012 12:25
- 1 Respostas
- 1680 Exibições
- Última mensagem por young_jedi

Qui Out 11, 2012 14:08
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.