• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites no infinito] a resolução está correta?

[limites no infinito] a resolução está correta?

Mensagempor Fabio Wanderley » Dom Abr 01, 2012 03:20

Minha dúvida está em dois limites:

1) \lim_{x \to +\infty}\left[x - \sqrt[]{x^2 + 1} \right]

\lim_{x \to +\infty}x - \sqrt[]{x^2 + 1}. \frac{x + \sqrt[]{x^2 + 1}}{x + \sqrt[]{x^2 + 1}}

\lim_{x \to +\infty}\frac{x^2 - (x^2 + 1)}{x + \sqrt[]{x^2 + 1}}

\lim_{x \to +\infty}\frac{-1}{x + \sqrt[]{x^2 + 1}}

\frac{-1}{+\infty + (+\infty)} = 0
Esta resolução é válida? Mais precisamente as operações com o símbolo "infinito"...

----------------------------------------------------------------------------------------------------------

2) \lim_{x \to +\infty}\left[\sqrt[]{x + 1} - \sqrt[]{x + 3} \right]

\lim_{x \to +\infty}\left[\sqrt[]{x + 1} - \sqrt[]{x + 3} \right].\frac{\left[\sqrt[]{x + 1} + \sqrt[]{x + 3} \right]}{\left[\sqrt[]{x + 1} + \sqrt[]{x + 3} \right]}

\lim_{x \to +\infty}\frac{x + 1 - x - 3}{\sqrt[]{x+1}+\sqrt[]{x+3}}

\lim_{x \to +\infty}\frac{-2}{\sqrt[]{x+1}+\sqrt[]{x+3}}

\lim_{x \to +\infty}\frac{1}{\sqrt[]{x}}.\frac{-2}{\sqrt[]{1 + \frac{1}{x}}+\sqrt[]{1+\frac{3}{x}}}
Que propriedade, envolvendo os radicandos, foi usada na linha acima?

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limites no infinito] a resolução está correta?

Mensagempor MarceloFantini » Dom Abr 01, 2012 03:36

No primeiro, o correto seria ir do limite diretamente a zero. São símbolos sem sentido dizer que \frac{-1}{+ \infty + (+\infty} = 0. No segundo, ele apenas colocou o número x em evidência, veja: \sqrt{x+1} = \sqrt{x\left(1 + \frac{1}{x}\right)} = \sqrt{x} \cdot \sqrt{\left(1+ \frac{1}{x}\right)}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [limites no infinito] a resolução está correta?

Mensagempor Fabio Wanderley » Dom Abr 01, 2012 15:31

Obrigado, Marcelo!

E agora visualizei a operação no radicando.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: