• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites no infinito] a resolução está correta?

[limites no infinito] a resolução está correta?

Mensagempor Fabio Wanderley » Dom Abr 01, 2012 03:20

Minha dúvida está em dois limites:

1) \lim_{x \to +\infty}\left[x - \sqrt[]{x^2 + 1} \right]

\lim_{x \to +\infty}x - \sqrt[]{x^2 + 1}. \frac{x + \sqrt[]{x^2 + 1}}{x + \sqrt[]{x^2 + 1}}

\lim_{x \to +\infty}\frac{x^2 - (x^2 + 1)}{x + \sqrt[]{x^2 + 1}}

\lim_{x \to +\infty}\frac{-1}{x + \sqrt[]{x^2 + 1}}

\frac{-1}{+\infty + (+\infty)} = 0
Esta resolução é válida? Mais precisamente as operações com o símbolo "infinito"...

----------------------------------------------------------------------------------------------------------

2) \lim_{x \to +\infty}\left[\sqrt[]{x + 1} - \sqrt[]{x + 3} \right]

\lim_{x \to +\infty}\left[\sqrt[]{x + 1} - \sqrt[]{x + 3} \right].\frac{\left[\sqrt[]{x + 1} + \sqrt[]{x + 3} \right]}{\left[\sqrt[]{x + 1} + \sqrt[]{x + 3} \right]}

\lim_{x \to +\infty}\frac{x + 1 - x - 3}{\sqrt[]{x+1}+\sqrt[]{x+3}}

\lim_{x \to +\infty}\frac{-2}{\sqrt[]{x+1}+\sqrt[]{x+3}}

\lim_{x \to +\infty}\frac{1}{\sqrt[]{x}}.\frac{-2}{\sqrt[]{1 + \frac{1}{x}}+\sqrt[]{1+\frac{3}{x}}}
Que propriedade, envolvendo os radicandos, foi usada na linha acima?

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limites no infinito] a resolução está correta?

Mensagempor MarceloFantini » Dom Abr 01, 2012 03:36

No primeiro, o correto seria ir do limite diretamente a zero. São símbolos sem sentido dizer que \frac{-1}{+ \infty + (+\infty} = 0. No segundo, ele apenas colocou o número x em evidência, veja: \sqrt{x+1} = \sqrt{x\left(1 + \frac{1}{x}\right)} = \sqrt{x} \cdot \sqrt{\left(1+ \frac{1}{x}\right)}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [limites no infinito] a resolução está correta?

Mensagempor Fabio Wanderley » Dom Abr 01, 2012 15:31

Obrigado, Marcelo!

E agora visualizei a operação no radicando.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}