• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite Trigonométrico

Limite Trigonométrico

Mensagempor jmoura » Seg Mar 26, 2012 03:34

Como resolvo esse limite?

\lim_{x->0} \frac{sen(x).sen(3x).sen(5x)}{tan(2x).tan(4x).tan(6x)}
jmoura
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 23, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Limite Trigonométrico

Mensagempor LuizAquino » Seg Mar 26, 2012 17:24

jmoura escreveu:Como resolvo esse limite?

\lim_{x->0} \frac{sen(x).sen(3x).sen(5x)}{tan(2x).tan(4x).tan(6x)}


Note que:

\lim_{x\to 0} \dfrac{\,\textrm{sen}\,x \,\textrm{sen}\,3x \,\textrm{sen}\, 5x}{\,\textrm{tg}\,2x \,\textrm{tg}\,4x \,\textrm{tg}\, 6x} = \lim_{x\to 0} \frac{\,\textrm{sen}\,x \,\textrm{sen}\,3x \,\textrm{sen}\, 5x}{\frac{\,\textrm{sen}\,2x}{\cos 2x} \frac{\,\textrm{sen}\,4x}{\cos 4x} \frac{\,\textrm{sen}\,6x}{\cos 6x}}

= \lim_{x\to 0} \dfrac{\cos 2x \cos 4x \cos 6x\,\textrm{sen}\,x \,\textrm{sen}\,3x \,\textrm{sen}\, 5x}{\textrm{sen}\,2x \,\textrm{sen}\,4x \,\textrm{sen}\,6x}

= \lim_{x\to 0} \dfrac{(\cos 2x \cos 4x \cos 6x) (x)(3x)(5x)\dfrac{\,\textrm{sen}\,x \,\textrm{sen}\,3x \,\textrm{sen}\, 5x}{(x)(3x)(5x)}}{(2x)(4x)(6x)\dfrac{\textrm{sen}\,2x \,\textrm{sen}\,4x \,\textrm{sen}\,6x}{(2x)(4x)(6x)}}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite Trigonométrico

Mensagempor Fabio Wanderley » Ter Mar 27, 2012 00:03

A resposta é 5/16?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Limite Trigonométrico

Mensagempor LuizAquino » Ter Mar 27, 2012 12:58

Fabio Wanderley escreveu:A resposta é 5/16?


Sim.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.