• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivadas] regra da cadeia

[derivadas] regra da cadeia

Mensagempor emsbp » Sex Mar 16, 2012 08:45

Bom dia.
O enunciado do exercício é: calcule a derivada total da seguinte função:
u = \frac{{e}^{ax}(y-z)}{({a}^{2}+1)}, sendo y =a sen(x) e z= cos(x), com a constante. Está indicado como solução \frac{du}{dx} = {e}^{ax}sen(x).
No entanto, segundo a minha resolução, não consigo chegar ao resultado apresentado.
Segue agora como resolvi:

\frac{du}{dx}=\frac{du}{dy}\frac{dy}{dx}+\frac{du}{dz}\frac{dz}{dx}.
ora, \frac{du}{dy} = \frac{{e}^{ax}}{({a}^{2}+1)}
\frac{dy}{dx} = a cos(x)
\frac{du}{dz}=\frac{-{e}^{ax}}{({a}^{2}+1)}
\frac{dz}{dx}=-sen(x)
Logo, \frac{du}{dx}=\frac{{e}^{ax}}{({a}^{2}+1)}acos(x)+\frac{{e}^{ax}}{({a}^{2}+1)}sen(x) = \frac{{e}^{ax}}{({a}^{2}+1)} (acos(x)+sen(x))
Muito provavelmente, é necessário fazer simplificações e/ou substituições para chegar à solução dada, mas de momento não estou a ver como.
Peço ajuda.
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: [derivadas] regra da cadeia

Mensagempor LuizAquino » Sex Mar 16, 2012 12:15

emsbp escreveu:Calcule a derivada total da seguinte função:
u = \frac{{e}^{ax}(y-z)}{({a}^{2}+1)}, sendo y =a sen(x) e z= cos(x), com a constante. Está indicado como solução \frac{du}{dx} = {e}^{ax}sen(x).


emsbp escreveu: No entanto, segundo a minha resolução, não consigo chegar ao resultado apresentado.
Segue agora como resolvi:

\frac{du}{dx}=\frac{du}{dy}\frac{dy}{dx}+\frac{du}{dz}\frac{dz}{dx}.


Aqui há um erro. Note que a função u depende de três variáveis: x, y e z. Além disso, temos que cada variável dessa depende de x. Ou seja, é como se tivéssemos x=f(x), y=g(x) e z=h(x).

Dessa forma, temos que:

\dfrac{du}{dx} = \dfrac{\partial u}{\partial x}\dfrac{d x}{d x} + \dfrac{\partial u}{\partial y}\dfrac{d y}{d x} + \dfrac{\partial u}{\partial z}\dfrac{d z}{d x}

Agora efetue os cálculos e você obterá a reposta correta.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [derivadas] regra da cadeia

Mensagempor emsbp » Sex Mar 16, 2012 18:38

Muito obrigado!
Realmente "escapou-me" derivar em função de x.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}