• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivadas] regra da cadeia

[derivadas] regra da cadeia

Mensagempor emsbp » Sex Mar 16, 2012 08:45

Bom dia.
O enunciado do exercício é: calcule a derivada total da seguinte função:
u = \frac{{e}^{ax}(y-z)}{({a}^{2}+1)}, sendo y =a sen(x) e z= cos(x), com a constante. Está indicado como solução \frac{du}{dx} = {e}^{ax}sen(x).
No entanto, segundo a minha resolução, não consigo chegar ao resultado apresentado.
Segue agora como resolvi:

\frac{du}{dx}=\frac{du}{dy}\frac{dy}{dx}+\frac{du}{dz}\frac{dz}{dx}.
ora, \frac{du}{dy} = \frac{{e}^{ax}}{({a}^{2}+1)}
\frac{dy}{dx} = a cos(x)
\frac{du}{dz}=\frac{-{e}^{ax}}{({a}^{2}+1)}
\frac{dz}{dx}=-sen(x)
Logo, \frac{du}{dx}=\frac{{e}^{ax}}{({a}^{2}+1)}acos(x)+\frac{{e}^{ax}}{({a}^{2}+1)}sen(x) = \frac{{e}^{ax}}{({a}^{2}+1)} (acos(x)+sen(x))
Muito provavelmente, é necessário fazer simplificações e/ou substituições para chegar à solução dada, mas de momento não estou a ver como.
Peço ajuda.
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: [derivadas] regra da cadeia

Mensagempor LuizAquino » Sex Mar 16, 2012 12:15

emsbp escreveu:Calcule a derivada total da seguinte função:
u = \frac{{e}^{ax}(y-z)}{({a}^{2}+1)}, sendo y =a sen(x) e z= cos(x), com a constante. Está indicado como solução \frac{du}{dx} = {e}^{ax}sen(x).


emsbp escreveu: No entanto, segundo a minha resolução, não consigo chegar ao resultado apresentado.
Segue agora como resolvi:

\frac{du}{dx}=\frac{du}{dy}\frac{dy}{dx}+\frac{du}{dz}\frac{dz}{dx}.


Aqui há um erro. Note que a função u depende de três variáveis: x, y e z. Além disso, temos que cada variável dessa depende de x. Ou seja, é como se tivéssemos x=f(x), y=g(x) e z=h(x).

Dessa forma, temos que:

\dfrac{du}{dx} = \dfrac{\partial u}{\partial x}\dfrac{d x}{d x} + \dfrac{\partial u}{\partial y}\dfrac{d y}{d x} + \dfrac{\partial u}{\partial z}\dfrac{d z}{d x}

Agora efetue os cálculos e você obterá a reposta correta.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [derivadas] regra da cadeia

Mensagempor emsbp » Sex Mar 16, 2012 18:38

Muito obrigado!
Realmente "escapou-me" derivar em função de x.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59