• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] integral por substituiçao trigonometrica 2

[calculo] integral por substituiçao trigonometrica 2

Mensagempor beel » Dom Nov 27, 2011 18:06

nessa integral
\int_{}^{}\frac{(1-r^2)^5^/^2}{r^3}dr
fiz r=sen\theta dr=cos\thetad\theta
...
\int_{}^{}\frac{cos^6\theta d\theta}{sen^3\theta},
mas ai travei...
tentei resolver mas deu um resultado estranho
\sqrt[]{lnx}+k= \sqrt[]{lnsen \theta}+k
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral por substituiçao trigonometrica 2

Mensagempor LuizAquino » Ter Nov 29, 2011 15:11

beel escreveu:nessa integral
\int \frac{(1-r^2)^5^/^2}{r^3}dr
fiz r=sen\theta dr=cos\thetad\theta
...
\int\frac{cos^6\theta d\theta}{sen^3\theta},
mas ai travei...
tentei resolver mas deu um resultado estranho
\sqrt[]{lnx}+k= \sqrt[]{lnsen \theta}+k


Note que:

\int \frac{\cos^6\theta}{\textrm{sen}^3\,\theta} \, d\theta = \int \frac{\left(1-\,\textrm{sen}^2\,\theta\right)^3}{\textrm{sen}^3\,\theta} \, d\theta

= \int \frac{1 - 3\,\textrm{sen}^2\,\theta + 3\,\textrm{sen}^4\,\theta -\,\textrm{sen}^6\,\theta}{\textrm{sen}^3\,\theta} \, d\theta

= \int \frac{1}{\textrm{sen}^3\,\theta} - \frac{3}{\textrm{sen}\,\theta} + 3\,\textrm{sen}\,\theta - \,\textrm{sen}^3\,\theta \, d\theta

= \int \frac{1}{\textrm{sen}^3\,\theta} \, d\theta - 3 \int \frac{1}{\textrm{sen}\,\theta} \, d\theta + 3 \int \,\textrm{sen}\,\theta \, d\theta - \int \,\textrm{sen}^3\,\theta \, d\theta

Agora basta resolver cada uma das integrais.

Lembre-se que para conferir a sua reposta você pode usar o procedimento que já foi lhe indicado em suas mensagens anteriores.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.