• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor thiago toledo » Qui Nov 10, 2011 15:59

Seja g uma função tal que g(1)=2, g'(1)=3 e g''(1)=8. Se f é uma função tal que f(x)={x}^{4}.g(x) , calcule f''(1).
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor LuizAquino » Qui Nov 10, 2011 16:21

thiago toledo escreveu:Seja g uma função tal que g(1)=2, g'(1)=3 e g''(1)=8. Se f é uma função tal que f(x)={x}^{4}\cdot g(x) , calcule f''(1).


Você já enviou essa questão em outro tópico:

viewtopic.php?f=120&t=6419

Por favor, não duplique as suas mensagens.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada]

Mensagempor thiago toledo » Qui Nov 10, 2011 16:39

Eu sei disto, mas ninguém conseguiu me ajudar. Minha resolução ficou assim:

f'(x) = 4x³.g(x) + x^4 . g'(x)

f''(x) = 12x².g(x) + 4x³.g'(x) + 4x³.g'(x) + x^4 . g''(x)

esta correto, pois minha resposta não esta batendo com o gabarito que tem como resposta 40.

Minha resposta encontrada foi 56.

Alguém pode me dar uma luz?
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor LuizAquino » Qui Nov 10, 2011 17:42

thiago toledo escreveu:Eu sei disto, mas ninguém conseguiu me ajudar.

Houve sim uma ajuda. Inclusive, foi indicado o procedimento que você usou na sua resolução.

thiago toledo escreveu:Minha resolução ficou assim:

f'(x) = 4x^3.g(x) + x^4 . g'(x)

f''(x) = 12x^2.g(x) + 4x^3.g'(x) + 4x^3.g'(x) + x^4 . g''(x)

esta correto, pois minha resposta não esta batendo com o gabarito que tem como resposta 40.

Minha resposta encontrada foi 56.


Note que no outro tópico foi solicitado que você enviasse a sua resolução, mas você não enviou.

A solução está correta. O gabarito está errado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.