• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Indefinida e Definida] Calculá-las

[Integral Indefinida e Definida] Calculá-las

Mensagempor esquilowww » Qui Out 27, 2011 20:20

Pessoal, antes de tudo gostaria de agradecer a ajuda que recebi num tópico anterior que criei, e devido aos colaboradores consegui resolver a referida questão.

Hoje trago questão que assim como anteriormente "travo" e não consigo resolve-las.

1) \int_{}^{}(x^5 - 4x^2 + \frac{2}{x^3}-1)dx



2) \int_{}^{}\frac{x^2+2x}{(x^3+3x^2)^5}dx


3) os valores de a e b para que \int_{a}^{b}(1-x^2)dx represente a área entre a curva de equção y = 1 - x^2 e o eixo x, com y > 0 e calcule esta área.


4) \int_{1}^{2} \frac{x}{x^2+4}dx


Gostaria de uma ajuda para resolver estas.
Desde já agradeço.
esquilowww
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 14, 2011 23:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração/Ciências Contábeis
Andamento: cursando

Re: [Integral Indefinida e Definida] Calculá-las

Mensagempor esquilowww » Qui Out 27, 2011 22:07

esquilowww escreveu:Pessoal, antes de tudo gostaria de agradecer a ajuda que recebi num tópico anterior que criei, e devido aos colaboradores consegui resolver a referida questão.

Hoje trago questão que assim como anteriormente "travo" e não consigo resolve-las.

1) \int_{}^{}(x^5 - 4x^2 + \frac{2}{x^3}-1)dx


Consegui resolver esta questão, porém gostaria de saber se fiz correto.

\frac{x^6}{6} - \frac{4x^3}{3} + \frac{{2x}^{-2}}{-2} - x =

\frac{x^6}{6} - \frac{4x^3}{3} + \frac{{-2x}^{-2}}{2} - x=

\frac{x^6}{6} - \frac{4x^3}{3} {-x}^{-2} - x
esquilowww
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 14, 2011 23:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração/Ciências Contábeis
Andamento: cursando

Re: [Integral Indefinida e Definida] Calculá-las

Mensagempor LuizAquino » Qui Out 27, 2011 22:38

Ao invés de "ganhar o peixe", que tal "aprender a pescar"?

Para estudar o passo a passo da resolução, faça o seguinte:

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate x^5 - 4x^2 + 2/(x^3) - 1 dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução.

Depois de estudar a resolução das integrais indefinidas, fica fácil calcular as integrais definidas.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.