• Anúncio Global
    Respostas
    Exibições
    Última mensagem

É possível aplicar D' Hospital?

É possível aplicar D' Hospital?

Mensagempor clarivando » Qua Dez 24, 2008 19:11

Molina, para aplicar Hospital em \lim_{x\to0}\((senx)^x, {0^0}, fiz ln\lim_{x\to0}\((senx)^x = ln k e em seguida obtive ln k = \lim_{x\to0}\(ln(senx)^x = \lim_{x\to0}\frac{\frac{x}{x}\ln(senx)}{\frac{1}{x}} = \lim_{x\to0}\frac{\ln(senx)}{\frac{1}{x}} = \lim_{x\to0}\frac{-\infty}{\infty}, ou seja, não consegui encontrar \frac{\infty}{\infty} e nem \frac{0}{0}, mas afinal, de alguma maneira, será que é possível aplicar D' Hospital nesse limite? Ah, e obrigado por me esclarecer que no limite ln0 tende a menos infinito!
clarivando
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Dez 21, 2008 20:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: É possível aplicar D' Hospital?

Mensagempor Molina » Qua Dez 24, 2008 21:12

Boa noite, Clarivando.

Primeiramente, de nada pela ajuda anterior. Sempre é bom analisar graficamente um limite.

Agora vamos a esta dúvida.
Antes de tudo, quando você D' Hospital nao queria dizer L'Hopital? O nome deve-se a esse matemático aqui: http://pt.wikipedia.org/wiki/Guillaume_ ... C3%B4pital que publicou a regra que levou seu nome.

Neste caso acho que nao dá pra usar a regra, pelo menos nao entendi quando voce foi de \lim_{x\to0}\((senx)^x para ln\lim_{x\to0}\((senx)^x Se possível me explique melhor.

Já tentou usar a regra da cadeia?

Abraços e bom estudo!
Ah, e um feliz natal.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: É possível aplicar D' Hospital?

Mensagempor Guill » Dom Mai 27, 2012 16:47

Não é muito elegante aplicar o logaritmo neperiano no limite. Deve ser feito assim:

Seja y uma função tal que:

y = (senx)^x


Podemos fazer:

ln(y) = ln[(senx)^x]


Logo:

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}ln[(senx)^x]

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}\frac{ln(senx)}{\frac{1}{x}}


Esse é um caso onde se pode aplicar o Teorema de L'Hospital:

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}\frac{\frac{cosx}{senx}}{\frac{-1}{x^2}}

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}\frac{-x^2.cosx}{senx}


Podemos usar novamente o Teorema:

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}\frac{-2x.cosx - x^2.senx}{cosx} = 0



Uma vez que, quando ln(y) \rightarrow 0 \Rightarrow y \rightarrow 1:

\lim_{x\rightarrow 0} (senx)^x = 1
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: É possível aplicar D' Hospital?

Mensagempor Guill » Dom Mai 27, 2012 16:52

Só para esclarecer, não importa o sinal, uma vez que:

\frac{-\infty}{\infty}=\frac{\frac{1}{\infty}}{\frac{1}{-\infty}} = \frac{0}{-0}=\frac{0}{0}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D