por Claudin » Ter Ago 02, 2011 03:09
Não consigo resolver este exercício de limite de função composta.
![\lim_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2}{x-1} \lim_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2}{x-1}](/latexrender/pictures/d9eeb0f9ff2cb85dee2f595a724868f3.png)
Alguém poderia dar uma dica por onde começar?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Ter Ago 02, 2011 09:15
Olá Claudin,
Vou tentar fazer este como exemplo depois você tente os demais.
Façamos o seguinte,
![u=\sqrt[3]{x+7}\therefore x=u^3-7 u=\sqrt[3]{x+7}\therefore x=u^3-7](/latexrender/pictures/efd48cb81f3faa65977429065dbfd72d.png)
, veja que como

então

, pois
![u=\sqrt[3]{1+7}=2 u=\sqrt[3]{1+7}=2](/latexrender/pictures/4d9e9741bd46095bfb4439e3f451d881.png)
.
Assim temos,
![\lim_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2}{x-1}=\lim_{u\rightarrow2}\frac{u-2}{u^3-8} \lim_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2}{x-1}=\lim_{u\rightarrow2}\frac{u-2}{u^3-8}](/latexrender/pictures/03518b16d698c499e00d05f0f103e94f.png)
Sabemos que:

Logo,

, pois

.
Portanto,

Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Ter Ago 02, 2011 15:46
FilipeCaceres escreveu:Façamos o seguinte,
![u=\sqrt[3]{x+7}\therefore x=u^3-7 u=\sqrt[3]{x+7}\therefore x=u^3-7](/latexrender/pictures/efd48cb81f3faa65977429065dbfd72d.png)
, veja que como

então

, pois
![u=\sqrt[3]{1+7}=2 u=\sqrt[3]{1+7}=2](/latexrender/pictures/4d9e9741bd46095bfb4439e3f451d881.png)
.
Sendo
![u=\sqrt[3]{x+7} u=\sqrt[3]{x+7}](/latexrender/pictures/d89976de031f7ab9ea1b2deaf489006b.png)
, como concluimos que

?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Ter Ago 02, 2011 17:18
Claudin escreveu:Sendo
![u=\sqrt[3]{x+7} u=\sqrt[3]{x+7}](/latexrender/pictures/d89976de031f7ab9ea1b2deaf489006b.png)
, como concluimos que

?
Basta isolar x,
![u=\sqrt[3]{x+7} u=\sqrt[3]{x+7}](/latexrender/pictures/d89976de031f7ab9ea1b2deaf489006b.png)

Logo,

-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Ter Ago 02, 2011 17:21
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6478 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4560 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4853 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7037 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4269 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.