• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada!

Derivada!

Mensagempor giulioaltoe » Qui Jul 21, 2011 17:04

eu tenho a expressão \frac{t^3+1}{t^2-t-2} pede pra eu achar a derivada!eu encontrei o valor \frac{t^2-4t-3}{(t-2)^2} e no wolfram alpha ao inves de -3 ta dando +1, ja revisei a conta e nao estou achando meu erro!!
ve se alguem da um help ai...valew!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Derivada!

Mensagempor LuizAquino » Qui Jul 21, 2011 17:08

Envie a sua resolução para que possamos identificar onde está o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada!

Mensagempor giulioaltoe » Qui Jul 21, 2011 19:33

\frac{t^3+1}{t^2-t-2}=\frac{(t+1)(t^2+t+1)}{(t+1)(t-2)} apos cortar os termos comuns.. desenvolvi a derivada y'=\frac{(2t+1)(t-2)-(t^2+t+1)(1)}{(t-2)^2} e isso gerou \frac{2t^2-4t+t-2-t^2-t-1}{(t-2)^2}[\tex] = [tex]\frac{t^2-4t-3}{(t-2)^2}... ai ???
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Derivada!

Mensagempor MarceloFantini » Qui Jul 21, 2011 19:51

Esta é a resposta, não há mais simplificações possíveis.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada!

Mensagempor giulioaltoe » Qui Jul 21, 2011 19:57

uhum, mas quando joguei a conta no wolfram alpha nao bateu a resposta!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Derivada!

Mensagempor LuizAquino » Qui Jul 21, 2011 20:05

O seu erro está logo no início. Note que:
t^3+1\neq (t+1)(t^2+t+1)

Na verdade, o que temos é:
t^3+1 = (t+1)(t^2-t+1)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada!

Mensagempor MarceloFantini » Qui Jul 21, 2011 20:06

Ah, percebi. Um erro passou despercebido: t^3 +1 = (t+1)(t^2 -t+1) e não (t+1)(t^2 +t +1) = t^3 +t^2 +t +t^2 +t +1 = t^3 +2t^2 +2t +1
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada!

Mensagempor giulioaltoe » Qui Jul 21, 2011 20:16

hum e mesmo, sempre erro esses detalhezinhos... perdi quase 1 ponto numa prova que fiz so em erro assim!! vlw ai.. e isso msm!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: