• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida limite indeterminado

Duvida limite indeterminado

Mensagempor ewald » Seg Mai 09, 2011 17:20

Oi tenho essa duvida,, ja tentei de todas as formas que eu imaginei, ja vi aulas no youtube etc. O problema dessa é que tem uma raiz cubica. Eu consigo resolver de raiz quadrada, raiz quarta ... mais de impares eu me confundo. Alguem pode por favor resolver pra mim. *-)

\lim_{x\rightarrow 0} \frac{{(1+2x)}^{1/3}-1}{x}
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Duvida limite indeterminado

Mensagempor LuizAquino » Seg Mai 09, 2011 20:01

Como sempre, é uma questão de usar produtos notáveis.

Sabemos que:
a^3 - b^3 = (a - b)\left(a^2 + ab + b^2\right).

Desse modo, você precisa multiplicar o numerador e o denominador por:
\left(\sqrt[3]{(1+2x)^2} + \sqrt[3]{1+2x} + 1\right)

Note que fazendo isso você fará com que no numerador apareça o produto notável desejado:
\left(\sqrt[3]{1+2x} - 1\right)\left(\sqrt[3]{(1+2x)^2} + \sqrt[3]{1+2x} + 1\right) = \left(\sqrt[3]{1+2x}\right)^3 - 1^3 = 2x

Podemos também usar outra estratégia. Façamos a substituição de variáveis: u = \sqrt[3]{1+2x}. Teremos que quando x tende para 0, u tenderá para 1. Além disso, temos que x = \frac{u^3-1}{2}. Desse modo, o limite original é equivalente a:

\lim_{u\to 1} \frac{2(u - 1)}{u^3 - 1} .

Note que de novo você usará o produto notável indicado anteriormente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59