• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor ilovecer » Dom Fev 27, 2011 16:42

Olá , estou com problema no seguinte problema do Stewart 6 edição , página 97 n56.
\lim_{x\to1}\ \frac{f(x)}{x^2} =5

(a)\lim_{x\to0}\ {f(x)}=

(b)\lim_{x\to0}\frac{f(x)}{x}=

Sinceramente , não sei muito o que tentar.Só consegui chegar a conclusão que f(1)=5 , e depois tentei achar algumas funcoes para criar desigualdades validas para x proximo de 0 e poder aplicar o teorema do confronto , mas nada de sucesso, já que nao creio que posso afirmar algo sobre f(x) para x proximo de 0.
Agradeço já por qualquer esclarecimento!
ilovecer
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Fev 27, 2011 16:14
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites

Mensagempor LuizAquino » Dom Fev 27, 2011 18:38

O exercício não dá mais outra informação sobre a função f? Não há, por exemplo, algum gráfico no exercício?

Do jeito que você escreveu, a questão tem infinitas respostas!

Note que uma infinidade de funções possuem \lim_{x\to 1}\ \frac{f(x)}{x^2} =5. Para cada uma delas, teríamos uma resposta diferente para os outros limites desejados.

Por exemplo, digamos que a função fosse f(x)=6x^2-x. Nós teríamos:

\lim_{x\to1}\ \frac{f(x)}{x^2} =5

(a) \lim_{x\to 0} {f(x)} = 0

(b)\lim_{x\to 0} \frac{f(x)}{x} = -1

Digamos agora que a função fosse f(x)=x+4. Nós teríamos:

\lim_{x\to1}\ \frac{f(x)}{x^2} = 5

(a) \lim_{x\to 0} {f(x)} = 4

(b) \lim_{x\to 0} \frac{f(x)}{x} não existe, pois os seus limites laterais são distintos: \lim_{x\to 0^-} \frac{f(x)}{x} = -\infty e \lim_{x\to 0^+} \frac{f(x)}{x} = +\infty .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limites

Mensagempor ilovecer » Dom Fev 27, 2011 19:03

Caro Luiz , agradeço a ajuda , e sim , apenas isso é dado no exercício , a nao ser que meu livro tenha um erro singular neste exercicio em milhares de unidades :p.
Talvez o objetivo do exercicio deva mesmo promover essa reflexão apontada por tu, o Stewart é excentrico.
Novamente , obrigado.
ilovecer
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Fev 27, 2011 16:14
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.