• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor ARCS » Qui Out 28, 2010 19:27

Boa Noite,

Gostaria que alguem explica-se como resolver essa questão de limite SEM USAR o artifício de substituição de variáveis.

PS: Sei resolver usando o artíficio de substituição, meu professor resolveu na aula sem usa-lo, porém não entendi.

Expliquem detalhadamente para que eu possa entender!

Grato.
\lim_{x\rightarrow0}\frac{\sqrt[3]{x+1}-1}{x}
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limite

Mensagempor victoreis1 » Qui Out 28, 2010 20:02

Boa noite.. se vc já aprendeu derivadas, use a regra de L'Hôpital, transformando o limite em \lim_{x\to0} \frac{\frac{d}{dx}(\sqrt[3]{x+1} -1)}{\frac{dx}{dx}}

sabe-se que a derivada de x é 1 e a de (-1) é zero.. logo o limite é igual a \lim_{x\to0} {\frac{d}{dx}(\sqrt[3]{x+1})}

Não sei muito de derivadas.. se souber calcular, vê aí se dá certo (:
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Qui Out 28, 2010 22:30

Use fatoração de cubos: a^3 - b^3 = (a-b)(a^2 +ab +b^2). Você já tem um termo, agora multiplique numerador e denominador pelo outro.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.