• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valor de a???

Valor de a???

Mensagempor Leone de Paula » Sex Jul 16, 2010 19:49

Um dos termos do desenvolvimento de (x + 3a)5,(o 5 é expoente), é 360x3(o 3 é expoente). Sabendo que a não depende de x, qual o valor de a????
Leone de Paula
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Jun 16, 2010 22:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: formado

Re: Valor de a???

Mensagempor Douglasm » Sex Jul 16, 2010 19:57

Pelo expoente de x, sabemos que este é o terceiro termo no desenvolvimento binomial. Este termo é dado por:

C_2^5 . x^3 . (3a)^2 = 360x^3 \;\therefore

10.9a^2 = 360 \;\therefore

a^2 = 4 \;\therefore

a = 2 \;\;\mbox{ou}\;\; a = -2
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}