• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômio de Taylor de ordem 2

Polinômio de Taylor de ordem 2

Mensagempor Maisa_Rany » Seg Nov 19, 2018 16:53

Boa tarde! Podem me ajudar com a questão abaixo, por favor?

Encontre o Polinômio de Taylor de ordem 2 da função f(x,y) = e^x.cos y no ponto(0,0).

(_) Q(x, y) = 1 + x + 1/2 x^2 + 1/2 y^2
(_) Q(x, y) = 1 + x - 1/2 x^2 + 1/2 y^2
(_) Q(x, y) = x + 1/2 x^2 - 1/2 y^2
(_) Nenhuma das outras alternativas.
(_) Q(x, y) = 1 + x + x^2 - y^2
Maisa_Rany
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 25, 2018 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Re: Polinômio de Taylor de ordem 2

Mensagempor Gebe » Ter Nov 20, 2018 00:38

Para um polinomio de ordem 2, vamos precisar de algumas derivadas parciais, logo vamos calcula-las previamente assim como o seus valores no ponto (0,0):
\\
\frac{\partial f}{\partial x}=e^xcos(y)=e^0cos(0)=1\\
\\
\frac{\partial f}{\partial y}=-e^xsen(y)=-e^0sen(0)=0\\
\\
\frac{\partial^2 f}{\partial x^2}=e^xcos(y)=e^0cos(0)=1\\
\\
\frac{\partial^2 f}{\partial y^2}=-e^xcos(y)=-e^0cos(0)=-1\\
\\
\frac{\partial^2 f}{\partial x \partial y}=-e^xcos(y)=-e^0cos(0)=-1

O polinomio de ordem 2 é dado por:
\\
Q(x,y)= f(x_o,y_o)+\frac{\partial f}{\partial x}(x_o,y_o)(x-x_o)+\frac{\partial f}{\partial y}(x_o,y_o)(y-y_o)+\frac{1}{2!}\left(\frac{\partial^2 f}{\partial x^2}(x_o,y_o)(x-x_o)^2+2 \frac{\partial^2 f}{\partial x \partial y}(x_o,y_o)(x-x_o)(y-y_o)+ \frac{\partial^2 f}{\partial y^2}(x_o,y_o)(y-y_o)^2 \right)


\\Q(x,y) = 1 + 1.(x-0) + 0.(y-0) + \frac{1}{2}.\left(1.(x-0)^2+2.(-1).(x-0)(y-0)+(-1).(y-0)^2)\right)


\\Q(x,y) = 1 + x + \frac{1}{2}.\left(x^2-2xy-y^2\right)\\\\Q(x,y) = 1 + x + \frac{x^2}{2}-xy-\frac{y^2}{2}

Alternativa D (nenhuma deas alternativas)
Obs.: Confira os calculo, como fiz diretamente no LaTEX posso ter deixado passar algo.
Qualquer duvida deixe msg
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Polinômio de Taylor de ordem 2

Mensagempor Maisa_Rany » Ter Nov 20, 2018 16:26

Muito obrigada! Irei acompanhar os cálculos.
Tem outra questão: De forma geral, o PIB, P, é função destas duas variáveis: L e K: P = P(L,K). No ano de 1920, os dados da economia americana mostravam que αP/αL= 0,9 e αP/αK=0,15. Naquele ano, um incremento de 30% nos investimentos de trabalho e 10% em capital trariam um crescimento do PIB de:
(_) 20%
(_) 30%
(_) Nenhuma das outras alternativas.
(_) 28,5%
(_) 25%

Pode me ajudar com esta também?
Maisa_Rany
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 25, 2018 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?