• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TRAÇAR O GRÁFICO DA RETA TANGENTE

TRAÇAR O GRÁFICO DA RETA TANGENTE

Mensagempor ton_cineasta » Qui Abr 05, 2018 18:26

Determine a equação da reta tangente ao gráfico da função a seguir nos pontos dados e trace o gráficos:

f(x) = -x² - 4 nos pontos P(1,3) e Q(0,4)

Achei o m(x) = lim -2x , mas não tô conseguindo traçar as retas no gráfico. Se fosse, por exemplo, em (X1 = 0), eu saberia.
/\x->0
Mas com esses pontos dados não sei como aplicar na fórmula y - f(X)= [m(X)][X - X1].



Obrigado!
ton_cineasta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 05, 2018 18:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Jogos Digitais
Andamento: cursando

Re: TRAÇAR O GRÁFICO DA RETA TANGENTE

Mensagempor Gebe » Sex Abr 06, 2018 05:58

Não sei da onde tu tirou esse limite, só precisa tirar a derivada, veja:

1) Derivada da função pra achar m(x):
\frac{dF(x)}{dx}=-2x

2) Equação da reta no ponto (1,3):
\\
y-y_0 = m(x)*(x-x_0)\\
\\
y-3=(-2*1)*(x-1)\\
\\
y = -2x+5

Agora só achar outro ponto da reta e traçar (ex.: pra x=0 -> y=5)

3) Equação da rata no ponto (0,4):
\\
y-y_0 = m(x)*(x-x_0)\\
\\
y-4=(-2*0)*(x-0)\\
\\
y = 4

Como se esperava a tg é 0 no vertice da função, ou seja, será uma reta constante em y=4

Espero ter ajudado, bons estudos.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 95
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: TRAÇAR O GRÁFICO DA RETA TANGENTE

Mensagempor ton_cineasta » Seg Abr 09, 2018 15:47

Muito obrigado! Ajudou sim!!!

Ainda tô me embananando porque as retas não ficaram tangentes à curva do gráfico da função. Mas deve ser algum detalhe que eu tô deixando passar...
ton_cineasta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 05, 2018 18:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Jogos Digitais
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}