por tiago_28 » Ter Mai 19, 2015 20:10
Aplicando a Regra de L'Hôpital no limite abaixo estou encontrando

, mas o gabarito informa que o limite não existe

Como mostrar que esse limite não existe? Lembrando que preciso calcular isso usando L'Hôpital.
-
tiago_28
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Mai 19, 2015 19:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por lucas7 » Qua Mai 20, 2015 20:45
Aplicando L'Hopital, a primeira derivada dessa função é:

derivando de novo:

sucessivamente:

Assim, verifica-se que mesmo aplicando L'Hopital inúmeras vezes esse limite tende a um quociente de zeros. (Pois sempre haverá x no numerador e denominador)
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
-
lucas7
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Ter Fev 15, 2011 19:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (limite) L'hôpital
por gui_rottini » Qua Nov 02, 2011 15:51
- 1 Respostas
- 1458 Exibições
- Última mensagem por Neperiano

Sex Nov 04, 2011 14:11
Cálculo: Limites, Derivadas e Integrais
-
- O limite existe?
por Cleyson007 » Sáb Abr 28, 2012 17:00
- 1 Respostas
- 1560 Exibições
- Última mensagem por LuizAquino

Ter Mai 01, 2012 16:36
Cálculo: Limites, Derivadas e Integrais
-
- Existe ou não o limite?
por Cleyson007 » Sáb Abr 28, 2012 17:28
- 2 Respostas
- 2005 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 14:14
Cálculo: Limites, Derivadas e Integrais
-
- O limite existe ou não?
por Cleyson007 » Sáb Abr 28, 2012 17:30
- 3 Respostas
- 2171 Exibições
- Última mensagem por Guill

Dom Abr 29, 2012 15:09
Cálculo: Limites, Derivadas e Integrais
-
- Prova de que o limite não existe.
por arthur_ » Sáb Ago 22, 2009 21:29
- 2 Respostas
- 6383 Exibições
- Última mensagem por arthur_

Dom Ago 23, 2009 15:12
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.