• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida resolução de um limite

duvida resolução de um limite

Mensagempor Sara123 » Sex Fev 20, 2015 14:43

ln((x-1)^2)/x
limite desta expressão quendo x tende para menos infinito.
obrigada
Sara123
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Fev 20, 2015 14:37
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: ciencias
Andamento: cursando

Re: duvida resolução de um limite

Mensagempor adauto martins » Sáb Fev 21, 2015 15:24

\lim_{x\rightarrow -\infty}ln({1-x})^{2x}=\lim_{x\rightarrow -\infty}ln(1+(-x)^{-2x)}...faz-se y=-x,x\rightarrow -\infty,y\rightarrow \infty...logo \lim_{y\rightarrow \infty}ln({1+y}^{y})^{2}=ln(\lim_{y\rightarrow\infty}(({1+y})^{y})^{2}=ln{e}^{2}=2
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: duvida resolução de um limite

Mensagempor adauto martins » Dom Fev 22, 2015 12:39

mais uma correçao:
L=\lim_{x\rightarrow -\infty}ln({x-1})^{2}/x=\lim_{x\rightarrow-\infty}ln(({x-1})^{1/x})^{2}...faz-se x=-y,ai teremos q. x\rightarrow -\infty,y\rightarrow  \inf,entao L=\lim_{y\rightarrow \infty}ln(-({y+1}))^{2}})^{-1/y}=\lim_{y\rightarrow \infty}ln(({y+1})^{1/y})^{-2}=ln (\lim_{y\rightarrow \infty}({1+y})^{1/y})^{-2}=ln{e}^{-2}=-2...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59