• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite Trigonométrico [Problema com o Zero]

Limite Trigonométrico [Problema com o Zero]

Mensagempor LukasTsunami » Qui Out 09, 2014 14:58

Seguinte, estou com uma dúvida tremenda, porque não consigo entender uma questão. Já fiz ela de várias formas, seja por propriedades dos limites, dividindo um limite pra cada termo, sendo multiplicando ambos os termos e depois continuando, mas mesmo assim não consigo resolver esse limite seguindo a regra (unica que me passaram no momento)

lim x -> 0 de (Senx)/x = 1...

a conta é a seguinte:

lim x -> 0 de [(x * cos3x) / cos2x]

De todas as formas que faço, a resposta dá Zero. Porém no livro, a resposta está 1/2. Não consegui achar resolução pro cálculo acima dar 1/2 de forma alguma e do porquê disso... O enunciado dá calcule, e depois os limites...

Uma pergunta... num limite trigonométrico, a resposta pode ser zero?

Vide anexo a conta montada certinho:

E depois a forma que EU pensei na conta... (uma delas), obrigado
Anexos
limite.jpg
limite.jpg (7.93 KiB) Exibido 977 vezes
limite2.png
LukasTsunami
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Out 09, 2014 14:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Limite Trigonométrico [Problema com o Zero]

Mensagempor adauto martins » Sáb Out 11, 2014 14:29

\lim_{x\rightarrow0}A=\lim_{x\rightarrow0}x.(cos(3x)/cos(2x))=\lim_{x\rightarrow0}x.(cos(2x+x)/cos(2x))=\lim_{x\rightarrow0}(cos(2x).cos(x)-sen(2x)sen(x)/2.cos(x).(sen(x)/x)),como\lim_{x\rightarrow0}sex/x=1,temos:
A=1/2...pois,\lim_{x\rightarrow0}(cos2x.cosx=1,\lim_{x\rightarrow0}sen2x.sex=0 e \lim_{x\rightarrow0}cosx=1...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?