• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxas relacionadas

Taxas relacionadas

Mensagempor Lorijuca » Qui Mai 29, 2014 22:23

Oi gente... Gostaria de uma ajudinha nesta questão :
Ao meio-dia, um navio A está 100 km a oeste do navio B. O navio A está navegando para o sul a 35 km/h, e o navio B está indo para o norte a 25 km/h. Quão rápido estará variando a distância entre eles às 4 horas da tarde?

Minha dúvida é a seguinte... Representei a distância entre os navios como y e a variação dessa distância como dy/dt (já que a questão pede a variação em relação ao tempo). O problema é que , ao desenhar a situação , não ficou como um triângulo retângulo (de forma a fazer a derivação implícita facilmente). Como eu achei a distância percorrida por B (100km) e por A (140 km) após quatro horas, somei-as (ficando 240km) e construí um triângulo retângulo cuja hipotenusa é y, cateto oposto 240 e cateto adjacente 100 (porque o navio A inicialmente estava a 100km do navio B). Tentei fazer a derivação implícita usando a nova equação do triângulo retângulo para descobrir y, mas com certeza algo está errado no meu cálculo... Tenho uma prova importantíssima amanhã e ainda não tirei minha dúvida... Grata a quem puder ajudar.
Lorijuca
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mai 29, 2014 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}