• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais duplas por coordenadas polares

Integrais duplas por coordenadas polares

Mensagempor Victor Mello » Dom Mai 25, 2014 16:48

Galera, eu estava tentando resolver essa integral dupla \int\int ye^xdA, onde a região se localiza no primeiro quadrante e é limitada pelo círculo x^2+y^2 = 25.

Bom, parece que é simples essa integral, mas infelizmente eu não consegui progredir o raciocínio. No começo até eu consegui reconhecer a região limitada, ou seja, o raio é 5 segundo a equação, e o intervalo do ângulo só pode estar entre 0 e \pi/2, já que a região está no primeiro quadrante, até aí tudo bem. Na hora de converter para coordenadas polares, ficou assim: \int_{0}^{\pi/2} \int_{0}^{5}rsen\theta*{e}^{rcos\theta}rdrd\theta, e na hora de integrar em relação a r, deu sen\theta\int_{0}^{5}r^2*{e}^{rcos\theta}dr pois o sen\theta se comporta como uma constante para esse caso. Assim, caiu uma integral por partes , mas parece que não deu certo, pois na hora de chamar a r^2 de u e derivar, vai ficar 2rdr o du, e muito menos integrar o dv. Será que tem outro método que simplifique isso, ou é inevitável? Enfim, se alguém puder me ajudar, eu agradeço desde já! :-D

Obrigado!
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.