• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Seja f(x) = (3x - 2)/(x - 2) RESOLVIDO

[Limites] Seja f(x) = (3x - 2)/(x - 2) RESOLVIDO

Mensagempor yuricastilho » Sáb Abr 05, 2014 19:59

Seja f(x)=\frac{(3x - 2)}{(x - 2)} calcule os limites:
\lim_{x \rightarrow + \infty} f(x)  \lim_{x \rightarrow - \infty} f(x)
Não tenho ideia de como começar porque se substituir infnito dará infinito sobre infinito, que é uma indeterminação.
Também não consegui enxergar nenhuma fatoração ou manipulação algrica. Se alguém puder me ajudar, ficarei muito grato.
Editado pela última vez por yuricastilho em Dom Abr 06, 2014 22:46, em um total de 1 vez.
yuricastilho
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 05, 2014 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Limites] Seja f(x) = (3x - 2)/(x - 2) calcule os limite

Mensagempor Russman » Dom Abr 06, 2014 01:15

Exato. Substituindo x=\infty o limite calcula \frac{\infty}{\infty} que é uma indeterminação. Ou seja, esse limite é um número um tanto difícil de obter. Porém, vamos manipular a função. Divida o numerador e o denominador por x.

\lim_{x\rightarrow \infty } f(x) = \lim_{x\rightarrow \infty }\frac{3x-2}{x-2} = \lim_{x\rightarrow \infty }\frac{3-\frac{2}{x}}{1-\frac{2}{x}}

Concorda?

Se sim, basta aplicar o limite. Como \frac{2}{x} \rightarrow 0, então

\lim_{x\rightarrow \infty } f(x)  = \lim_{x\rightarrow \infty }\frac{3-\frac{2}{x}}{1-\frac{2}{x}} = \frac{3}{1} = 3

Da mesma forma,

\lim_{x\rightarrow -\infty } f(x)  = \lim_{x\rightarrow -\infty }\frac{3-\frac{2}{x}}{1-\frac{2}{x}} = \frac{3}{1} = 3

Portanto, a reta y=3 é uma assintota dessa função.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Limites] Seja f(x) = (3x - 2)/(x - 2) calcule os limite

Mensagempor Russman » Dom Abr 06, 2014 01:16

.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Limites] Seja f(x) = (3x - 2)/(x - 2) calcule os limite

Mensagempor yuricastilho » Dom Abr 06, 2014 22:45

Muito Obrigado Russman.
Ajudou muito :)
yuricastilho
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 05, 2014 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59