• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais - Sólido de revolução

Integrais - Sólido de revolução

Mensagempor Francielly Novais » Sáb Mar 29, 2014 17:02

- Considere uma superfície esférica de raio . Determine a área que é removida dessa superfície por um cone com vértice no centro da esfera, se, no vértice, a seção meridiana do cone tem um ângulo de 2θ radianos.

Alguém poderia me ajudar nessa questão, seria de grande ajuda!

E um esboço feito: http://sketchtoy.com/59910201

Eu fiz achando a equação do cone, agora estou na duvida. Eu acho a equação (área do cone) e integro ou tenho achar também a área da circunferência?
Quem seria a altura do cone.

O volume de um sólido por revolução é dado pela função V =∫π[f(x)]²dx
V= πr²h
V= πa²h
Quem seria h?
Me ajudem, n sei como resolver essa questão
Francielly Novais
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 29, 2014 16:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integrais - Sólido de revolução

Mensagempor young_jedi » Dom Mar 30, 2014 12:18

neste caso voce esta querendo calcular a area portanto a integral sera

A=\int 2\pi.y.dl

dl=\sqrt{\left(\frac{dx}{d\phi}\right)^2+\left(\frac{dy}{d\phi}\right)^2}d\phi

A=\int 2\pi.y.\sqrt{\left(\frac{dx}{d\phi}\right)^2+\left(\frac{dy}{d\phi}\right)^2}d\phi

como se trata da revoluçãom de uma circunferencia para formar uma esfera então

x=R.cos(\phi)

y=R.sen(\phi)


\frac{dx}{d\phi}=-R.sen\phi

\frac{dy}{d\phi}=R.cos\phi

A=\int_{0}^{\theta} 2\pi.R.sen\phi.\sqrt{R^2.sen^\phi+R^2.cos^2\phi}d\phi

A=\int_{0}^{\theta}2\pi.R.sen\phi.\sqrt{R^2}d\phi

A=\int_{0}^{\theta}2\pi.R^2.sen\phi.d\phi

A=2\pi.R^2\int_{0}^{\theta}.sen\phi.d\phi
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.