• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Escoamento de água

Escoamento de água

Mensagempor Cleyson007 » Dom Jan 12, 2014 17:11

Se um tanque tem 5000 galões de água, que escoa pelo fundo em 40 minutos, então a Lei de Torricelli dá o volume V de água que restou no tanque depois de t minutos como V=5000{\left(1-\frac{t}{40} \right)}^{2}\,\,\,\,0\leq\,t\leq\,40

Encontre a taxa segundo a qual a água está escoando do tanque depois de(a) 5 min (b) 10 min (c) 20 min e (d) 40 min. Em que instante o escoamento é mais rápido? E mais vagaroso? Resuma o que você encontrou.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Escoamento de água

Mensagempor Guilherme Pimentel » Seg Jan 13, 2014 22:43

Para ajudar um pouco:

\\
\frac{dV}{dt}= -\frac{2}{40} \cdot 5000 \cdot \left( 1-\frac{t}{40}\right)=-250 \cdot \left( 1-\frac{t}{40}\right)=-\frac{25}{4} \cdot \left( 40-t \right) \\


\\
\frac{dV}{dt} (5) =-\frac{25 \cdot 35}{4} =-\frac{875}{4}=-218.75
Editado pela última vez por Guilherme Pimentel em Qua Jan 15, 2014 04:51, em um total de 1 vez.
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado

Re: Escoamento de água

Mensagempor Cleyson007 » Ter Jan 14, 2014 00:36

Olá, boa noite Guilherme!

Amigo, consegui encontrar os valores para 5min, 10min, 20min e 40min. Estou com dúvida nessa parte: "Em que instante o escoamento é mais rápido? E mais vagaroso? Resuma o que você encontrou."

Pode me ajudar?

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Escoamento de água

Mensagempor Guilherme Pimentel » Qua Jan 15, 2014 04:55

Se a pergunta é sobre os tempos nos quais vc calculou a derivada é só comparar os valores obtidos, o de maior valor absoluto é o mais rápido, o de menor valor absoluto é o mais lento.

Se for em relação a todos os momentos possíveis, a resposta é mais rápido em t=0 mais lento em t=40.
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59