• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Calculo de volumes] Dedução volume do cone

[Calculo de volumes] Dedução volume do cone

Mensagempor ronaldo9nine » Qua Nov 20, 2013 10:31

Olá, gostaria de saber como é feita a dedução da formula do volume do cone por meio de revolução( por integral)

abs.
ronaldo9nine
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 20, 2013 10:27
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Calculo de volumes] Dedução volume do cone

Mensagempor e8group » Qua Nov 20, 2013 20:06

Há uma demonstração aqui http://en.wikipedia.org/wiki/Cone . Também é possível por soma de Riemann ,veja

Considere o seguimento de reta y = \frac{r}{h} \cdot x  , x \in [0,h](r,h > 0) . Girando este segmento em torno do eixo x iremos obter o cone circular de raio re altura h .Dividindo h em n partes iguais e denotando \Deta x = x_{i} - x_{i-1} = h/n, i= 1 , ... , n onde

x_0 = 0 < x_1 = h/n < x_2 = 2h/n < ....< x_n = h .

No intervalo I_{i}= [x_{i-1},x_i] 
,n , a interseção do plano x= x_i com o cone será um circulo cuja área é constante e é igual a A_i = \pi (r/h x_i)^2 = \pi \frac{r^2}{h^2} x_i^2 . Assim o volume de cada fatia é

A_i \cdot \Delta x = \pi \frac{r^2}{h^2} x_i^2 \cdot \Delta x e portanto o volume do cone pode ser aproximado por

\sum_{i=1}^n \pi \frac{r^2}{h^2} x_i^2 \cdot \Delta x . Passando ao limite com n \to + \infty , obtemos a fórmula

\pi \frac{r^2}{h^2} \int_{0}^{h} x^2 dx .

\Delta x vira "dx" , \sum vira \int .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}