• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite simples com 1 variável

Limite simples com 1 variável

Mensagempor RenanDias » Sáb Nov 02, 2013 19:47

Olá de novo pessoal. Bom, eu estou com uma dúvida em um limite aparentemente simples. Eu consegui fazer o limite mas ao jogar no Wolfram a resposta deu diferente.

No que eu poderia ter errado?

Segue o que eu fiz:

\lim_{x->1} \frac{\sqrt[]{x} - x^2}{1 - \sqrt[]{x}}

1- Multipliquei pelo conjugado do denominador:

\lim_{x->1} \frac{\sqrt[]{x} - x^2}{1 - \sqrt[]{x}}. \frac{1+\sqrt[]{x}}{1+\sqrt[]{x}}

\lim_{x->1} \frac{\sqrt[]{x}+x-x^2-{x}^{3/2}}{1-x}

\lim_{x->1} \frac{\sqrt[]{x}-{x}^{3/2}+x(1-x)}{1-x}

Assumindo 1-x diferente de 0:

\lim_{x->1} \sqrt[]{x}-{x}^{3/2}+x

\lim_{x->1} \sqrt[]{x}-{x}^{3/2}+x=1

No Wolfram isso deu 3. Como pode?
RenanDias
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Out 20, 2013 16:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.