• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como separar equação diferencial ordinária.

Como separar equação diferencial ordinária.

Mensagempor Sobreira » Qui Set 26, 2013 09:06

Tenho dificuldade em reconhecer quando uma E.D.O é separável ou não. Sei que ela deve se apresentar desta forma:

\frac{dy}{dx}=h\left(x \right)g\left(y \right)

Mas não tenho total certeza sobre como tentar separar uma E.D.O corretamente.
Por exemplo, as equações a seguir eu resolvi por fator integrante mas acho que consigo separar. Consigo ou não ??

{x}^{2}\frac{dy}{dx}+x\left(x+2 \right)y={e}^{x}

L\frac{di}{dt}+Ri=E

Onde L, R, E são constantes.

Já nesta equação qual a diferença, em relação a separação, das formas abaixo:

x\frac{dy}{dx}-Ln xy=0

x\frac{dy}{dx}-Ln (xy)=0
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor young_jedi » Qui Set 26, 2013 14:19

esta primeira não da para separar

x^2\frac{dy}{dx}+x(x+2)y=e^x

\frac{dy}{dx}=\frac{e^x-x(x+2)y}{x^2}

veja que não da para separar em uma função de y vezes uma função de x

a segunda da para separar

L\frac{di}{dt}+R.i=E

\frac{di}{dt}=\frac{E-R.i}{L}

onde h(t)=1 e g(i)=E-Ri

a terceira equação imagino que seja

x\frac{dy}{dx}-ln(x).y=0

\frac{dy}{dx}=\frac{ln(x)}{x}.y

então h(x)=\frac{ln(x)}{x} e g(y)=y

ja esta ultima tambem não da para seprar

x\frac{dy}{dx}-ln(xy)=0

x\frac{dy}{dx}-ln(x)-ln(y)=0

\frac{dy}{dx}=\frac{ln(x)+ln(y)}{x}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor Sobreira » Sáb Set 28, 2013 09:25

young_jedi escreveu:esta primeira não da para separar

x^2\frac{dy}{dx}+x(x+2)y=e^x

\frac{dy}{dx}=\frac{e^x-x(x+2)y}{x^2}

veja que não da para separar em uma função de y vezes uma função de x


Então...aí que está.
Eu não consigo entender como é possível verificar se as funções irão se apresentar como produto ou não.
Pelo que eu entendi não pode haver soma entre x e y ???

Neste termo eles estão digamos amarrados??? mas e se eu expandir não vou ter a separação???

-x(x+2)y

Por exemplo:

{x}^{2}y-2xy

E daí eu poderia separar ???
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor young_jedi » Sáb Set 28, 2013 11:44

este termo você consegue seperar

x(x+2)y

o problema é que também temos uma exponencial de x

e^x-x(x+2)y

por isso você não consegue separar

realmente você não pode ter uma soma entre x e y por exemplo

\frac{dy}{dx}=x+y

essa função você também não consegue separar
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor Sobreira » Sáb Set 28, 2013 12:46

Este meu desenvolvimento estaria correto ???

{x}^{2}\frac{dy}{dx}+{x}^{2}y+2xy={e}^{x}

\frac{dy}{dx}=\frac{{e}^{x}-{x}^{2}y-2xy}{{x}^{2}}

\frac{dy}{dx}=\frac{{e}^{x}}{{x}^{2}}-\frac{{x}^{2}y}{{x}^{2}}-\frac{2xy}{{x}^{2}}

\frac{dy}{dx}=\frac{{e}^{x}}{{x}^{2}}-\frac{y}{{x}^{2}}-\frac{2y}{x}

A partir dái, sinceramente já não consigo mais separar.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor young_jedi » Sáb Set 28, 2013 18:13

esta certo a partir dai não da para separar mais!!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D