por CrazzyVi » Sáb Nov 14, 2009 13:34
Boa tarde, não estou consegindo achar esse limite:

E meu professor não pertime l'hopital na prova
jah tentei racionalizar, dividir por [text]\sqrt{x}[/text] e não to cosegindo aí achei esse forum e espero q possam me ajudar
o resultado tem q ser 1/2
obrigado desde jah
-
CrazzyVi
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 14, 2009 11:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Matemática
- Andamento: cursando
por thadeu » Seg Nov 16, 2009 13:42
Vou mexer apenas com a expressão para reduzir espaço, ok!!!
Multiplicando por


Agora, no denominador, vamos colocar x em evidência na primeira raiz:

Colocando

em evidência, o denominador da fração fica:

Voltando para o limite:

Simplificando e substituindo

:

Confira sua resposta. Um abraço!
-
thadeu
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Out 19, 2009 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por CrazzyVi » Qui Dez 10, 2009 14:28
Muito obrigada Thadeu, gostaria de ter agradecido antes mas só estou vendo a resposta agora pois meu pc estava quebrado.
-
CrazzyVi
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 14, 2009 11:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] nao consigo achar o limite
por ghiza » Qui Set 25, 2014 19:36
- 1 Respostas
- 856 Exibições
- Última mensagem por DanielFerreira

Qui Set 25, 2014 22:19
Cálculo: Limites, Derivadas e Integrais
-
- Não consigo achar o determinante
por IsabelRangell » Qui Abr 08, 2010 17:08
- 1 Respostas
- 2434 Exibições
- Última mensagem por MarceloFantini

Qui Abr 08, 2010 19:55
Matrizes e Determinantes
-
- Nao consigo achar a forma reduzida da matriz..
por PeIdInHu » Seg Jun 14, 2010 23:07
- 1 Respostas
- 2484 Exibições
- Última mensagem por PeIdInHu

Seg Jun 14, 2010 23:55
Matrizes e Determinantes
-
- [Trigonometria complexa] Não consigo achar responder
por rochadapesada » Seg Abr 22, 2013 20:27
- 0 Respostas
- 1293 Exibições
- Última mensagem por rochadapesada

Seg Abr 22, 2013 20:27
Trigonometria
-
- voce pode me ajudar,nao consigo achar a resposta
por Dalila » Sex Nov 14, 2008 17:28
- 1 Respostas
- 1606 Exibições
- Última mensagem por Molina

Sex Jun 12, 2009 20:56
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.