• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de primeira e segunda ordem

Derivada de primeira e segunda ordem

Mensagempor Nina » Qui Nov 05, 2009 20:52

Ola.. estou fazendo um trabalho e ficquei com duvida neste problema p= \frac{{q}^{2} +3} {{(q+1)}{3} + {(q-1)}{3}}.
Então derivei em cima e em baixo e achei a segunda derivada como p=\frac{6}{12}.Gostaria de saber se esta certo o raciocínio e o resultado!
Obrigada
Nina
Nina
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Out 21, 2009 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Derivada de primeira e segunda ordem

Mensagempor marciommuniz » Sex Nov 06, 2009 13:02

Olá Nina... Derivar em baixo e em cima não é o certo para uma derivada de quocientes.
Siga essa fórmula padrão para derivadas de quocientes

Imagem
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.