por Claudin » Qui Jul 25, 2013 23:41
Olá, to com uma duvida em como resolver integral de linha
Calcule a seguinte integral

onde C consiste n segmento de reta

que une (2,0,0) a (3,4,5) seguido pelo segmento de reta vertical

de (3,4,5) a (3,4,0).
Não estou conseguindo parametrizar utilizando aquela fórmula de segmento de reta, acho que esse é o problema.
Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MateusL » Sex Jul 26, 2013 15:52
Vamos supor que queres um segmento de reta

que une dois pontos pontos

e

.
A reta que contém esse segmento pode ser representada como:

O segmento procurado é o conjunto de pontos pertencentes a

, com o parâmetro variando no intervalo
![[0,1] [0,1]](/latexrender/pictures/ccfcd347d0bf65dc77afe01a3306a96b.png)
.
Ou seja:
![C=\{r(t),\ t\in [0,1]\} C=\{r(t),\ t\in [0,1]\}](/latexrender/pictures/6d291203d1f7e131041b98ad5b3e0466.png)
Só tens que notar que nessa integral que queres calcular, terás que dividí-la em duas: uma integral para

e outra para

.
Abraço!
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral de linha - 2
por DanielFerreira » Dom Jun 03, 2012 16:14
- 2 Respostas
- 2836 Exibições
- Última mensagem por DanielFerreira

Dom Jun 03, 2012 19:14
Cálculo: Limites, Derivadas e Integrais
-
- Integral de linha
por calc3 » Dom Jun 07, 2015 11:43
- 0 Respostas
- 3140 Exibições
- Última mensagem por calc3

Dom Jun 07, 2015 11:43
Cálculo: Limites, Derivadas e Integrais
-
- Integral de linha - Trabalho
por Bruhh » Ter Jul 05, 2011 16:55
- 1 Respostas
- 3213 Exibições
- Última mensagem por LuizAquino

Ter Jul 05, 2011 19:10
Cálculo: Limites, Derivadas e Integrais
-
- [Integral de Linha] Teoria
por Claudin » Qui Jul 25, 2013 23:47
- 0 Respostas
- 2025 Exibições
- Última mensagem por Claudin

Qui Jul 25, 2013 23:47
Cálculo: Limites, Derivadas e Integrais
-
- [Integral de linha] problema
por Ahoush123 » Sáb Nov 28, 2015 15:20
- 0 Respostas
- 2753 Exibições
- Última mensagem por Ahoush123

Sáb Nov 28, 2015 15:20
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.