• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo, Valor Médio. Velocidade instantânea.

Cálculo, Valor Médio. Velocidade instantânea.

Mensagempor leocastilho » Qua Jun 12, 2013 12:35

Olá pessoal, estou com um problema aqui que não consigo resolver.

O velocimetro de um automóvel registra a velocidade de 50km/h quando ele passa por um marco quilométrico ao longo da rodovia. Quatro minutos mais tarde, quando o automóvel passa por um segundo marco a 5 Km do primeiro, o velocimetro registra 55Km/h. Use o teorema do valor médio para provar que a velocidade excedeu a 70 Km/h em alguns instântes enquanto o automovel percorria a distância entre os dois marcos.

Primeiramente eu tentei criar um gráfico do tempo em função da velocidade e apliquei na fórmula do valor médio


f '(c) = f(b) - f(a)/ b - a
quando o tempo é 4 a velocidade é 55, logo f(4) = 55
quando o tempo é 0 a velocidade é 50, logo f(0)= 50
f '(c) = 55 - 50 / 4 - 0
f '(c) = 5/4

Apartir deste ponto já não sei o que posso fazer =/. Outro problema é que não sei aonde posso usar a distância de 5 Km entre os marcos.

Obrigado desde já.
leocastilho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jun 12, 2013 12:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Cálculo, Valor Médio. Velocidade instantânea.

Mensagempor e8group » Qua Jun 12, 2013 22:40

Vamos tentar ,considere a função X na variável t que fornece a posição do automóvel .Suponha que no instante t_k,tem-se X(t_k) = x_k km para algum x_k > 0 e v(t_k) = X'(t_k) = 50km/h ,mas sabemos que após 4 min , X(t_n) = (5+x_k)km com t_n = t_k + 4min (pois X(t_n) - X(t_k) = 5km ) .Mas ,pelo TVM , existe algum c em (t_k,t_n) tal que ,X'(c) = v(c) = \frac{X(t_n) - X(t_k)}{t_n - t_k} =\frac{5km}{4min} =75km/h .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: