• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema envolvendo derivadas.

Problema envolvendo derivadas.

Mensagempor arthurvct » Sex Mai 03, 2013 20:16

Calcule os coeficientes angulares das retas tangentes às curvas f(x)=1/x e g(x)=x^2, no ponto de interseção dos gráficos destas curvas. Qual o ângulo entre estas retas?
arthurvct
 

Re: Problema envolvendo derivadas.

Mensagempor arthurvct » Sex Mai 03, 2013 20:17

alguém pode me dar uma luz?
arthurvct
 

Re: Problema envolvendo derivadas.

Mensagempor arthurvct » Sáb Mai 04, 2013 10:45

ninguém??
arthurvct
 

Re: Problema envolvendo derivadas.

Mensagempor marinalcd » Sáb Mai 04, 2013 16:11

arthurvct escreveu:Calcule os coeficientes angulares das retas tangentes às curvas f(x)=1/x e g(x)=x^2, no ponto de interseção dos gráficos destas curvas. Qual o ângulo entre estas retas?


1ª: as derivadas das curvas determinam os coeficientes angulares das retas tangentes, então é só derivar e depois calcular no ponto da interseção (substituir);

2ª: Para descobrir o ângulo, basta você calcular o arcotangente do coeficiente que você encontrar.

As curvas são bem simples e as derivadas também. Tente fazer!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Problema envolvendo derivadas.

Mensagempor arthurvct » Qui Mai 16, 2013 19:23

Obrigado! Mas tenho outra dúvida, eu igualei f(x) a g(x) por se tratar do ponto de interseção, achei que x=1, dai eu achei f'(1) e g'(1), deu -1 e 2, mas e agora? como calcular a arcotangente disso? me explica a partir daqui, por favor!! Abraço
arthurvct
 


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.