• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES 2 variáveis] Provar que não existe o limite

[LIMITES 2 variáveis] Provar que não existe o limite

Mensagempor Sohrab » Qui Abr 25, 2013 00:01

Opa galera, beleza?
Sei que para provar que um certo limite de duas variáveis não existe, basta tomar o limite dessa função através de dois caminhos distintos, ou seja, de duas curvas, de forma que esses limites sejam diferentes. Prova-se assim, que não existe limite naquele ponto (xo,yo) para o qual tende o limite, isso é, xo,yo é um ponto de descontinuidade da superfície..

Eu resolvi vários exercícios sobre aqui, e todos eu conseguia resolver de forma trivial, tomando curvas como

g:(0,t)
g:(t,t)
g:(0,t²)
g:(t, at)

enfim, coisas 'fáceis' de ir testando..

Porém, como fazer para "descobrir uma curva" para usar nesse 'teste', quando ela precisa ser um pouco mais elaborada?

exemplo:
o professor resolveu este assim:

\lim_{(x,y)->(0,0)} \frac{x²y²}{x² - y²}

tome a curva c1(t) = (t,0)
\lim_{(t)->(0)} f(c1(t)) = 0(esse limite converge para zero)

tome agora a curva c2(t) = (\sqrt[2]{t²+t^4} , t)
\lim_{(t)->(0)} f(c1(t)) = +oo (esse limite diverge)

como conseguimos valores diferentes para a função quando x,y se aprovima de (0,0) por diferentes caminhos, o limite não existe.

Como ele chegou nessa curva c2? Qual motivação ele teve de testar justamente ela? Existe algum método prático para isso? Algum macete?
Valeu pessoal.
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59