• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mudança de variavel na integral

Mudança de variavel na integral

Mensagempor matmatco » Ter Abr 23, 2013 22:29

olá, não estou entendendo o que tenho que fazer nesse exercício .

Suponha f contínua em [a,b].Seja g:[c,d]\rightarrow IR com g' contínua em [c,d], g(c)=a e g(d)=b. Suponha ainda que g'(u)>0 em ]c,d[ .Seja c = u0<u1<u2<....<un=d uma partição de [c,d] e seja a= x0<x1<x2<...<xn = b partição de [a,b] onde xi = g(ui) para i variando de 0 a n.

a) mostre que para todo i, i = 1,2,....n existe ui em [ui-1,ui] tal que \Delta xi = g'(ui)\Delta ui

b) conclua de (a) que \sum_{i=1}^{n} f(g(ui))g'(ui)\Delta ui = \sum_{i=1}^{n} f(ci)\Delta xi onde ci = g(ui).

c) Mostre que existe M>0 tal que \Delta xi \leq M \Delta ui para i variando de 0 a n.

d) conclua que
\lim_{max \Delta ui\to 0}\sum_{i=1}^{n}f(g(ui))g' (ui)\Delta ui = \lim_{max \Delta xi\to 0} \sum_{i=1}^{n}}f(ci)\Delta xi
ou seja 
 \int_{c}^{d}f(g(u))g' (u)du = \int_{a}^{b}f(x)dx
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.