Suponha f contínua em [a,b].Seja g:[c,d]
IR com g' contínua em [c,d], g(c)=a e g(d)=b. Suponha ainda que g'(u)>0 em ]c,d[ .Seja c = u0<u1<u2<....<un=d uma partição de [c,d] e seja a= x0<x1<x2<...<xn = b partição de [a,b] onde xi = g(ui) para i variando de 0 a n.a) mostre que para todo i, i = 1,2,....n existe ui em [ui-1,ui] tal que

b) conclua de (a) que
onde ci = g(ui).c) Mostre que existe M>0 tal que
para i variando de 0 a n.d) conclua que


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.