por Henrique Bueno » Sex Abr 19, 2013 00:25
Supondo que o lim f(x)=L quando x->p prove que existem r>0 e M>0 tais que
0<|x-p|<r => -M <=f(x)<=M
primeiramente ao analisar as afirmações, a primeira parte (0<|x-p|<r) é idêntica a definição de limite, somente empregou um r onde normalmente usamos um delta.
Usando que |f(x)-L|< E (onde E é aquele epslon eu acho, aquela letra grega)
-E < f(x)-L < E
-E -L < f(x) < E -L
embora eu tenha conseguido fazer uma sentença semelhante a -M <=f(x)<=M, não consigo definir um M através dela. Além disso acredito que era necessário relacionar o M e o r para que o limite fosse provado. Por favor, me ajudem !
-
Henrique Bueno
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Mar 02, 2011 19:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Sex Abr 19, 2013 02:00
Temos que

.
Como

,

.
Tente concluir a parti daí .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] duas variáveis. Prova através da definição formal
por marcosmuscul » Sáb Jan 25, 2014 17:59
- 2 Respostas
- 5969 Exibições
- Última mensagem por marcosmuscul

Ter Fev 04, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Prove a partir da definição de limite
por Ruan Petterson » Qui Nov 28, 2013 23:13
- 6 Respostas
- 3427 Exibições
- Última mensagem por e8group

Sex Nov 29, 2013 10:05
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADA - cálculo através da definição
por emsbp » Sáb Abr 28, 2012 18:20
- 4 Respostas
- 1706 Exibições
- Última mensagem por emsbp

Qua Mai 02, 2012 06:41
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de limite através da série de MacLaurin
por Camargo » Qui Nov 25, 2010 15:13
- 0 Respostas
- 1831 Exibições
- Última mensagem por Camargo

Qui Nov 25, 2010 15:13
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Limites pela definiçao
por JoaoLuiz07 » Qui Ago 27, 2015 16:55
- 1 Respostas
- 1672 Exibições
- Última mensagem por adauto martins

Sáb Ago 29, 2015 20:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.